A q-Series Bernoulli-Euler Partition Formula

被引:0
|
作者
Shannon, A. G. [1 ,2 ]
机构
[1] Univ New South Wales, Warrane Coll, Kensington, NSW 1465, Australia
[2] Raffles Coll, Sydney, NSW 2060, Australia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper utilises a modification of q-series to develop some partition formulas in the tradition of Bernoulli-Euler-Rogers-Ramanujan identities. Many of the ideas owe their development to the detailed pioneering work of Leonard Carlitz, with the added acknowledgement to the creative work currently being done by other number theorists working in this fertile area.
引用
收藏
页码:6 / 9
页数:4
相关论文
共 50 条
  • [1] A GENERALIZATION OF BERNOULLI-EULER PARTITION FORMULA
    GOOD, IJ
    SCRIPTA MATHEMATICA, 1970, 28 (04): : 319 - &
  • [2] Quantum Dilogarithms and Partition q-Series
    Kato, Akishi
    Terashima, Yuji
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (01) : 457 - 481
  • [3] Quantum Dilogarithms and Partition q-Series
    Akishi Kato
    Yuji Terashima
    Communications in Mathematical Physics, 2015, 338 : 457 - 481
  • [4] An Expansion Formula for q-Series and Applications
    Zhi-Guo Liu
    The Ramanujan Journal, 2002, 6 : 429 - 447
  • [5] An expansion formula for q-series and applications
    Liu, ZG
    RAMANUJAN JOURNAL, 2002, 6 (04): : 429 - 447
  • [6] An Euler product transform applied to q-series
    Geoffrey B. Campbell
    The Ramanujan Journal, 2006, 12 : 267 - 293
  • [7] An Euler product transform applied to q-series
    Campbell, Geoffrey B.
    RAMANUJAN JOURNAL, 2006, 12 (02): : 267 - 293
  • [8] Quiver Mutation Loops and Partition q-Series
    Kato, Akishi
    Terashima, Yuji
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 336 (02) : 811 - 830
  • [9] Quiver Mutation Loops and Partition q-Series
    Akishi Kato
    Yuji Terashima
    Communications in Mathematical Physics, 2015, 336 : 811 - 830
  • [10] Two identities for the Bernoulli-Euler numbers
    Gauthier, N.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2008, 39 (07) : 937 - 944