ZOLOTAREV PROBLEM IN METRIC OF L1([-1, 1])

被引:0
|
作者
GALEEV, EM [1 ]
机构
[1] MV LOMONOSOV STATE UNIV,MOSCOW,USSR
关键词
D O I
10.1007/BF01093834
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:9 / 13
页数:5
相关论文
共 50 条
  • [1] Solution to one Zolotarev-type problem in the metric of L[-1,1]
    Geit, VE
    DOKLADY MATHEMATICS, 2002, 66 (03) : 365 - 368
  • [2] The Bound Coverage Problem by Aligned Disks in L1 Metric
    Liu, Xiaofei
    Liu, Zhonghao
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 305 - 312
  • [3] APPROXIMATION IN METRIC OF L1(XU)
    KRIPKE, BR
    RIVLIN, TJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 119 (01) : 101 - &
  • [4] Approximate matching in the L1 metric
    Amir, A
    Lipsky, O
    Porat, E
    Umanski, J
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2005, 3537 : 91 - 103
  • [5] Lines in the Plane with the L1 Metric
    Kantor, Ida
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (03) : 960 - 974
  • [6] METRIC PROJECTIONS IN L1(T)
    KAHANE, JP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (08): : 621 - 623
  • [7] On the l1 Procrustes problem
    Trendafilov, NT
    FUTURE GENERATION COMPUTER SYSTEMS, 2003, 19 (07) : 1177 - 1186
  • [8] Metric differentiation, monotonicity and maps to L1
    Jeff Cheeger
    Bruce Kleiner
    Inventiones mathematicae, 2010, 182 : 335 - 370
  • [9] Metric differentiation, monotonicity and maps to L1
    Cheeger, Jeff
    Kleiner, Bruce
    INVENTIONES MATHEMATICAE, 2010, 182 (02) : 335 - 370
  • [10] Visibility of rectangular objects in L1 metric
    Jeyalakshmi, S
    Krithivasan, K
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 70 (02) : 149 - 163