LIPSCHITZ SPECTRUM PRESERVING MAPPINGS ON ALGEBRAS OF MATRICES

被引:9
|
作者
MRCUN, J
机构
[1] University of Ljubljana Institute of Mathematics
关键词
D O I
10.1016/0024-3795(93)00078-E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that for any Lipschitz mapping T on the algebra M(n) of n x n matrices over the complex numbers satisfying T(0) = 0 and sigma(T(A) - T(B)) subset of sigma(A - B),A,B is an element of M(n), there exists an invertible matrix U is an element of M(n) such that T(A) = UAU(-1) for all A is an element of M(n) or T(A) = UA(t)U(-1) for all A is an element of M(n).
引用
收藏
页码:113 / 120
页数:8
相关论文
共 50 条