ITERATED K-LINE GRAPHS

被引:1
|
作者
LE, VB
PRISNER, E
机构
[1] TECH UNIV BERLIN,FACHBEREICH MATH 3,SEKRETARIAT MA8-1,D-10623 BERLIN,GERMANY
[2] UNIV HAMBURG,MATH SEMINAR,D-20146 HAMBURG,GERMANY
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For integers k greater-than-or-equal-to 2, the k-line graph L(k)(G) of a graph G is defined as a graph whose vertices correspond to the complete subgraphs on k vertices in G with two distinct vertices adjacent if the corresponding complete subgraphs have k - 1 common vertices in G. We define iterated k-line graphs by L(k)n(G):= L(k)(L(k)n-1(G)), where L(k)0(G):= G. In this paper the iterated behavior of the k-line graph operator is investigated. It turns out that the behavior is quite different for k = 2 (the well-known line graph case), k = 3, and k greater-than-or-equal-to 4.
引用
收藏
页码:193 / 203
页数:11
相关论文
共 50 条
  • [1] PERFECT K-LINE GRAPHS AND K-TOTAL GRAPHS
    LE, VB
    JOURNAL OF GRAPH THEORY, 1993, 17 (01) : 65 - 73
  • [2] k-ordered hamiltonicity of iterated line graphs
    Hartke, Stephen G.
    Ponto, Kathleen
    DISCRETE MATHEMATICS, 2009, 309 (06) : 1491 - 1497
  • [3] K-LINE IN ALGOL
    EBBIGHAUSEN, EG
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 1970, 82 (485) : 349 - +
  • [4] Outerplanarity of line graphs and iterated line graphs
    Lin, Huiqiu
    Yang, Weihua
    Zhang, Hailiang
    Shu, Jinlong
    APPLIED MATHEMATICS LETTERS, 2011, 24 (07) : 1214 - 1217
  • [5] K-LINE PHOTOMETRY OF A STARS
    HENRY, RC
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1969, 18 (156): : 47 - &
  • [6] Nonplanarity of Iterated Line Graphs
    Wang, Jing
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [7] Connectivity of iterated line graphs
    Shao, Yehong
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (18) : 2081 - 2087
  • [8] Connectivity of iterated line graphs
    Knor, M
    Niepel, L
    DISCRETE APPLIED MATHEMATICS, 2003, 125 (2-3) : 255 - 266
  • [9] Planarity of iterated line graphs
    Ghebleh, Mohammad
    Khatirinejad, Mahdad
    DISCRETE MATHEMATICS, 2008, 308 (01) : 144 - 147
  • [10] Distances in iterated line graphs
    Niepel, L
    Knor, M
    Soltes, L
    ARS COMBINATORIA, 1996, 43 : 193 - 202