APPROXIMATION OF DENSITY-FUNCTIONS BY SEQUENCES OF EXPONENTIAL-FAMILIES

被引:144
作者
BARRON, AR
SHEU, CH
机构
关键词
LOG-DENSITY ESTIMATION; EXPONENTIAL FAMILIES; MINIMUM RELATIVE ENTROPY ESTIMATION; KULLBACK-LEIBLER NUMBER; L2; APPROXIMATION;
D O I
10.1214/aos/1176348252
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Probability density functions are estimated by the method of maximum likelihood in sequences of regular exponential families. This method is also familiar as entropy maximization subject to empirical constraints. The approximating families of log-densities that we consider are polynomials, splines and trigonometric series. Bounds on the relative entropy (Kullback-Leibler distance) between the true density and the estimator are obtained and rates of convergence are established for log-density functions assumed to have square integrable derivatives.
引用
收藏
页码:1347 / 1369
页数:23
相关论文
共 52 条
[1]   A BOUND ON THE FINANCIAL VALUE OF INFORMATION [J].
BARRON, AR ;
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :1097-1100
[2]  
BARRON AR, 1991, 58 U ILL DEPT STAT T
[3]  
BARRON AR, 1991, IN PRESS IEEE T INFO
[4]  
BARRON AR, 1988, COMPUTING SCI STATIS, P192
[5]   ESTIMATION OF DENSITIES - MINIMAL RISK [J].
BRETAGNOLLE, J ;
HUBER, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 47 (02) :119-137
[6]  
BROWN LD, 1986, FUNDAMENTALS STATIST
[7]  
CENCOV NN, 1982, AM MATH SOC TRANSL, V53
[8]   APPROXIMATION OF LEAST-SQUARES REGRESSION ON NESTED SUBSPACES [J].
COX, DD .
ANNALS OF STATISTICS, 1988, 16 (02) :713-732
[9]   MORE ON ESTIMATION OF DISTRIBUTIONS USING ORTHOGONAL EXPANSIONS [J].
CRAIN, BR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (355) :741-745
[10]   ESTIMATION OF DISTRIBUTIONS USING ORTHOGONAL EXPANSIONS [J].
CRAIN, BR .
ANNALS OF STATISTICS, 1974, 2 (03) :454-463