CONVERGENCE OF MUSCL AND FILTERED SCHEMES FOR SCALAR CONSERVATION-LAWS AND HAMILTON-JACOBI EQUATIONS

被引:50
|
作者
LIONS, PL [1 ]
SOUGANIDIS, PE [1 ]
机构
[1] UNIV WISCONSIN, DEPT MATH, MADISON, WI 53706 USA
关键词
D O I
10.1007/s002110050102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the questions of convergence of: (i) MUSCL type (i.e. second-order, TVD) finite-difference approximations towards the entropic weak solution of scalar, one-dimensional conservation laws with strictly convex flux and (ii) higher-order schemes (filtered to ''preserve'' an upper-bound on some weak second-order finite differences) towards the viscosity solution of scalar, multi-dimensional Hamilton-Jacobi equations with convex Hamiltonians.
引用
收藏
页码:441 / 470
页数:30
相关论文
共 50 条