NEW INTEGRAL-EQUATION FOR SIMPLE FLUIDS

被引:20
|
作者
KANG, HS [1 ]
REE, FH [1 ]
机构
[1] LAWRENCE LIVERMORE NATL LAB, LIVERMORE, CA 94551 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 1995年 / 103卷 / 09期
关键词
D O I
10.1063/1.470688
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new integral equation for the radial distribution function of classical fluids. It employs the bridge function for a short-range repulsive reference system which was used earlier in our dense fluid perturbation theory. The bridge function is evaluated using Ballone et al.'s closure relation. Applications of the integral equation to the Lennard-Jones and inverse nth-power (n=12, 9, 6, and 4) repulsive systems show that it can predict thermodynamic and structural properties in close agreement with results from computer simulations and the reference-hypernetted-chain equation. We also discuss thermodynamic consistency tests on the new equation and comparisons with the integral equations of Rogers and Young and of Zerah and Hansen. The present equation has no parameter to adjust. This unique feature offers a significant advantage as it eliminates a time-consuming search to optimize such parameters appearing in other theories. It permits practical applications needing complex intermolecular potentials and for multicomponent systems. (C) 1995 American Institute of Physics.
引用
收藏
页码:3629 / 3635
页数:7
相关论文
共 50 条
  • [1] NEW, THERMODYNAMICALLY CONSISTENT, INTEGRAL-EQUATION FOR SIMPLE FLUIDS
    ROGERS, FJ
    YOUNG, DA
    PHYSICAL REVIEW A, 1984, 30 (02): : 999 - 1007
  • [2] MARTYNOV-SARKISOV INTEGRAL-EQUATION FOR THE SIMPLE FLUIDS
    SARKISOV, G
    TIKHONOV, D
    MALINSKY, J
    MAGARSHAK, Y
    JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (05): : 3926 - 3932
  • [3] Structural stability of simple fluids and accuracy of integral-equation theories
    Malescio, G
    Giaquinta, PV
    PHYSICAL REVIEW E, 2000, 62 (03): : 4439 - 4441
  • [4] Integral-equation theories of fluid phase equilibria in simple fluids
    Pellicane, Giuseppe
    Lee, Lloyd L.
    Caccamo, Carlo
    FLUID PHASE EQUILIBRIA, 2020, 521
  • [5] INTEGRAL-EQUATION APPROXIMATIONS FOR DIPOLAR FLUIDS
    PATEY, GN
    LEVESQUE, D
    WEIS, JJ
    MOLECULAR PHYSICS, 1979, 38 (01) : 219 - 239
  • [6] AN INTEGRAL-EQUATION FOR CLASSICAL FLUIDS AT EQUILIBRIUM
    HAZOUME, RP
    MOLECULAR PHYSICS, 1980, 39 (06) : 1445 - 1454
  • [7] INTEGRAL-EQUATION OF THE DYNAMIC PAIR-CORRELATION FUNCTION FOR NONEQUILIBRIUM SIMPLE FLUIDS
    GAN, HH
    EU, BC
    PHYSICAL REVIEW A, 1991, 43 (10): : 5706 - 5709
  • [8] THE CHEMICAL-POTENTIAL OF SIMPLE FLUIDS IN A COMMON CLASS OF INTEGRAL-EQUATION CLOSURES
    KJELLANDER, R
    SARMAN, S
    JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (05): : 2768 - 2775
  • [9] AN IMPROVED INTEGRAL-EQUATION FOR LINEAR POLYATOMIC FLUIDS
    LAGO, S
    SEVILLA, P
    ABASCAL, JLF
    CHEMICAL PHYSICS LETTERS, 1987, 135 (1-2) : 133 - 136
  • [10] INTEGRAL-EQUATION PERTURBATION-THEORY FOR RADIAL-DISTRIBUTION FUNCTION OF SIMPLE FLUIDS
    MADDEN, WG
    FITTS, DD
    MOLECULAR PHYSICS, 1975, 30 (03) : 809 - 824