Through techniques of controlled topology we determine the entropy function characterizing the distribution of combinatorially inequivalent metric ball coverings of n-dimensional manifolds of bounded geometry for every n greater than or equal to 2. Such functions control the asymptotic distribution of dynamical triangulations of the corresponding n-dimensional (pseudo)manifolds M of bounded geometry. They have an exponential leading behavior determined by the Reidemeister-Franz torsion associated with orthogonal representations of the fundamental group of the manifold The subleading terms are instead controlled by the Euler characteristic of M. Such results are either consistent with the known asymptotics of dynamically triangulated two-dimensional surfaces, or with the numerical evidence supporting an exponential leading behavior for the number of inequivalent dynamical triangulations on three- and four-dimensional manifolds.