Structural Engineering Vacuum-plasma Coatings Interstitial Phases

被引:7
|
作者
Sobol, O. V. [1 ]
机构
[1] Natl Tech Univ, Kharkiv Polytech Inst, 21 Frunze St, UA-61002 Kharkov, Ukraine
关键词
Structural engineering; Vacuum plasma coating; Interstitial phases; Metastable; Diffusion; Structural transformation; Shift mechanism; Stresses;
D O I
10.21272/jnep.8(2).02024
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The analysis of possible structural conditions defined nonequilibrium processes in vacuum-plasma methods of obtaining interstitial phase coatings. It is shown that nonequilibrium conditions the deposition of ion-plasma flows significantly expands the range of possible structural states formed material from amorphous like to highly ordered crystalline. High speed determines the thermalization phase forming cubic crystal lattice (in most cases the structural type NaCl). On examples of W-C and Ta-N system with a hexagonal lattice type in equilibrium conditions and shows the mechanism of the transition from a metastable state with a cubic lattice in equilibrium with a hexagonal crystal lattice. The transition is performed by diffusion-shear transformation with the formation of stacking faults in the alternation of the most densely packed planes along the [111] axis. The formation of stacking faults contribute to a small area of the shift in nanocrystalline materials and the availability of jobs, and shift the conversion itself (through the formation of stacking faults) is accompanied by a sudden relaxation of the structural stresses. Based on the atomic mobility criterion discussed mechanisms of structural transformations in the vacuum-plasma coatings and the necessary physical and technological conditions for structural changes aimed at the stage of precipitation and high temperature annealing.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Triboengineering behavior of vacuum-plasma coatings
    Mrocek, Zh.A.
    Ivashchenko, S.A.
    Frolov, I.S.
    Trenie i Iznos, 2001, 22 (03): : 305 - 310
  • [2] Vacuum-Plasma Coatings Based on the Multielement Nitrides
    Azarenkov, N. A.
    Sobol', O. V.
    Beresnev, V. M.
    Pogrebnyak, A. D.
    Kolesnikov, D. A.
    Turbin, P. V.
    Toryanik, I. N.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2013, 35 (08): : 1061 - 1084
  • [3] On reducing residual stresses in vacuum-plasma coatings
    Lyashenko, B.A.
    Rutkovskij, A.V.
    Soroka, E.B.
    Lipinskaya, N.V.
    Problemy Prochnosti, 2001, (04): : 62 - 68
  • [4] Multicomponent vacuum-plasma coatings with extended color gamma
    Klubovich, V.V.
    Litvinov, A.A.
    Fizika i Khimiya Obrabotki Materialov, 1998, (04): : 37 - 41
  • [5] Effect of vacuum conditions and plasma concentration on the chemical composition and adhesion of vacuum-plasma coatings
    Borisov, D. P.
    Kuznetsov, V. M.
    Slabodchikov, V. A.
    12TH INTERNATIONAL CONFERENCE ON GAS DISCHARGE PLASMAS AND THEIR APPLICATIONS, 2015, 652
  • [6] STRUCTURE AND MECHANICAL-PROPERTIES OF VACUUM-PLASMA COATINGS OF TICN
    MATSEVITYI, VM
    BORUSHKO, MS
    BERESNEV, VM
    ROMANOVA, LM
    UDOVENKO, ES
    STEEL IN THE USSR, 1984, 14 (03): : 146 - 148
  • [7] Structure and Mechanical Properties of TiCN Vacuum-plasma Coatings.
    Matsevityi, V.M.
    Borushko, M.S.
    Beresnev, V.M.
    Romanova, L.M.
    Udovenko, E.S.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya, 1984, (03): : 83 - 86
  • [8] Ti-N vacuum-plasma coatings for turbine compressor blades
    Styazhkin, VA
    Kopylov, AA
    Paleeva, SY
    PROTECTION OF METALS, 2000, 36 (03): : 292 - 293
  • [9] Ti-N vacuum-plasma coatings for turbine compressor blades
    V. A. Styazhkin
    A. A. Kopylov
    S. Ya. Paleeva
    Protection of Metals, 2000, 36 : 292 - 293
  • [10] VACUUM-PLASMA TECHNOLOGY FOR OBTAINING PROTECTIVE COATINGS FROM COMPLEX ALLOYS
    MUBOYADZHAN, SA
    KABLOV, EN
    BUDINOVSKII, SA
    METAL SCIENCE AND HEAT TREATMENT, 1995, 37 (1-2) : 56 - 58