Computational solution of stochastic differential equations

被引:20
|
作者
Sauer, Timothy [1 ]
机构
[1] George Mason Univ, Dept Math, Fairfax, VA 22030 USA
来源
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS | 2013年 / 5卷 / 05期
基金
美国国家科学基金会;
关键词
stochastic differential equations; computational methods; diffusion problems;
D O I
10.1002/wics.1272
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Stochastic differential equations (SDEs) provide accessible mathematical models that combine deterministic and probabilistic components of dynamic behavior. This article is an overview of numerical solution methods for SDEs. The solutions are stochastic processes that represent diffusive dynamics, a common modeling assumption in many application areas. We include a description of fundamental numerical methods and the concepts of strong and weak convergence and order for SDE solvers. In addition, we briefly discuss the extension of SDE solvers to coupled systems driven by correlated noise. (C) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:362 / 371
页数:10
相关论文
共 50 条