Hilbert space methods and quantum mechanics

被引:0
|
作者
Applebaum, Dave [1 ]
机构
[1] Univ Sheffield, Depanment Probabil & Stat, Sheffield S3 7RH, S Yorkshire, England
来源
MATHEMATICAL GAZETTE | 2010年 / 94卷 / 531期
关键词
D O I
10.1017/S0025557200002175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:571 / 571
页数:1
相关论文
共 50 条
  • [1] Hilbert space quantum mechanics is noncontextual
    Griffiths, Robert B.
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2013, 44 (03): : 174 - 181
  • [2] Hilbert space for quantum mechanics on superspace
    Coulembier, K.
    De Bie, H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (06)
  • [3] Quantum mechanics in an evolving Hilbert space
    Artacho, Emilio
    O'Regan, David D.
    PHYSICAL REVIEW B, 2017, 95 (11)
  • [4] Quantum mechanics as an approximation to classical mechanics in Hilbert space
    Bracken, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (23): : L329 - L335
  • [5] The role of the rigged Hilbert space in quantum mechanics
    de la Madrid, R
    EUROPEAN JOURNAL OF PHYSICS, 2005, 26 (02) : 287 - 312
  • [6] Photon quantum mechanics in real Hilbert space
    Hawton, Margaret
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [7] Quaternionic quantum mechanics in real Hilbert space
    Giardino, Sergio
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 158
  • [8] Epistemic restrictions in Hilbert space quantum mechanics
    Griffiths, Robert B.
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [9] Quantum mechanics: why complex Hilbert space?
    Cassinelli, G.
    Lahti, P.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2106):
  • [10] Bicomplex quantum mechanics: II. The Hilbert space
    Rochon, D.
    Tremblay, S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (02) : 135 - 157