A collaborative adaptive Wiener filter for multi-frame super-resolution

被引:4
|
作者
Mohamed, Khaled M. [1 ]
Hardie, Russell C. [1 ]
机构
[1] Univ Dayton, Dept Elect & Comp Engn, Image Proc Lab, 300 Coll Pk, Dayton, OH 45469 USA
关键词
aliasing; image restoration; super-resolution; under-sampling; correlation model; multi-frame; multi-patch;
D O I
10.3389/fphy.2015.00029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Factors that can limit the effective resolution of an imaging system may include aliasing from under-sampling, blur from the optics and external factors, and sensor noise. Image restoration and super-resolution (SR) techniques can be used to improve image resolution. One SR method, developed recently, is the adaptive Wiener filter (AWF) SR algorithm. This is a multi-frame SR method that combines registered temporal frames through a joint nonuniform interpolation and restoration process to provide a high-resolution image estimate. Variations of this method have been demonstrated to be effective for multi-frame SR, as well demosaicing RGB and polarimetric imagery. While the AWF SR method effectively exploits subpixel shifts between temporal frames, it does not exploit self similarity within the observed imagery. However, very recently, the current authors have developed a multi-patch extension of the AWF method. This new method is referred to as a collaborative AWF (CAWF). The CAWF method employs a finite size moving window. At each position, we identify the most similar patches in the image within a given search window about the reference patch. A single-stage weighted sum of all of the pixels in all of the similar patches is used to estimate the center pixel in the reference patch. Like the AWF, the CAWF can perform nonuniform interpolation, deblurring, and denoising jointly. The big advantage of the CAWF, vs. the AWF, is the CAWF can also exploit self-similarity. This is particularly beneficial for treating low signal-to-noise ratio (SNR) imagery. To date, the CAWF has only been developed for Nyquist-sampled single-frame image restoration. In this paper, we extend the CAWF method for multi-frame SR. We provide a quantitative performance comparison between the CAWF SR and the AWF SR techniques using real and simulated data. We demonstrate that CAWF SR outperforms AWF SR, especially in low SNR applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Modified Collaborative Adaptive Wiener Filter for Multi-frame Super-resolutionaper
    Mohamed, Khaled M.
    Hardie, Russell C.
    PROCEEDINGS OF THE 2015 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2015, : 9 - 14
  • [2] Multi-Frame Super-Resolution: A Survey
    Khattab, Mahmoud M.
    Zeki, Akram M.
    Alwan, Ali A.
    Badawy, Ahmed S.
    Thota, Lalitha Saroja
    2018 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC 2018), 2018, : 348 - 355
  • [3] Handheld Multi-Frame Super-Resolution
    Wronski, Bartlomiej
    Garcia-Dorado, Ignacio
    Ernst, Manfred
    Kelly, Damien
    Krainin, Michael
    Liang, Chia-Kai
    Levoy, Marc
    Milanfar, Peyman
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):
  • [4] Multi-frame super-resolution using adaptive normalized convolution
    Sundar, K. Joseph Abraham
    Vaithiyanathan, V.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (02) : 357 - 362
  • [5] Multi-frame super-resolution using adaptive normalized convolution
    K. Joseph Abraham Sundar
    V. Vaithiyanathan
    Signal, Image and Video Processing, 2017, 11 : 357 - 362
  • [6] Joint Multi-Frame Super-Resolution and Matting
    Prabhu, Sahana M.
    Rajagopalan, A. N.
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1924 - 1927
  • [7] Multi-frame super-resolution for face recognition
    Wheeler, Frederick W.
    Liu, Xiaoming
    Tu, Peter H.
    2007 FIRST IEEE INTERNATIONAL CONFERENCE ON BIOMETRICS: THEORY, APPLICATIONS AND SYSTEMS, 2007, : 193 - 198
  • [8] A multi-frame image super-resolution method
    Li, Xuelong
    Hu, Yanting
    Gao, Xinbo
    Tao, Dacheng
    Ning, Beijia
    SIGNAL PROCESSING, 2010, 90 (02) : 405 - 414
  • [9] Adaptive Frame Selection for Multi-frame Super Resolution
    Xue, Cuihong
    Yu, Ming
    Jia, Chao
    Shi, Shuo
    Zhai, Yandong
    ADVANCES IN FUTURE COMPUTER AND CONTROL SYSTEMS, VOL 1, 2012, 159 : 41 - 46
  • [10] Deep Reparametrization of Multi-Frame Super-Resolution and Denoising
    Bhat, Goutam
    Danelljan, Martin
    Yu, Fisher
    Van Gool, Luc
    Timofte, Radu
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2440 - 2450