Active Oxygen Target for Studies in Nuclear Astrophysics with Laser Compton Backscattered gamma-ray Beams

被引:1
|
作者
Ajvazyan, Robert [1 ]
Annand, John R. M. [2 ]
Balabanski, Dimiter L. [3 ]
Grigoryan, Nersik [1 ]
Kakoyan, Vanik [1 ]
Khachatryan, Patrik [1 ]
Khachatryan, Vachik [1 ]
Livingston, Kenneth [2 ]
Montgomery, Rachel [2 ]
Vardanyan, Henrik [1 ]
Vlahovic, Branislav [4 ]
Zhamkochyan, Simon [1 ]
Margaryan, Amur [1 ]
机构
[1] AI Alikhanyan Natl Sci Lab, 2 Alikhanyan Bros Str, Yerevan 0036, Armenia
[2] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[3] Horia Hulubay Natl Inst Phys & Nucl Engn, EL INP, Bucharest 077125, Magurele, Romania
[4] North Carolina Cent Univ, Dept Sci & Technol, Durham, NC 27707 USA
基金
英国科学技术设施理事会;
关键词
nuclear astrophysics; active target; gaseous detectors;
D O I
10.3390/particles1010009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An active target is being developed to be used in low-energy nuclear astrophysics experiments. It is a position- and time-sensitive detector system based on the low-pressure Multi Wire Proportional Chamber (MWPC) technique. Methylal ((OCH3)(2)CH2), at a pressure of a few Torr, serves as the working gas for MWPC operation, and in addition, the oxygen atoms of the methylal molecules serve as an experimental target. The main advantage of this new target detector system is that it has high sensitivity to the low-energy, highly-ionizing particles produced after photodisintegration of O-16 and insensitivity to gamma-rays and minimum ionizing particles. This allows users to detect only the products of the nuclear reaction of interest. The threshold energies for detection of alpha particles and C-12 nuclei are about 50 keV and 100 keV, respectively. The main disadvantage of this detector is the small target thickness, which is around a few tens of mu g/cm(2). However, reasonable luminosity can be achieved by using a multimodule detector system and an intense, Laser Compton Backscattered (LCB) gamma-ray beam. This paper summarizes the architecture of the active target and reports test results of the prototype detector. The tests investigated the timing and position resolutions of 30 x 30 mm(2) low-pressure MWPC units using an alpha-particle source. The possibility of measuring the O-16(gamma, alpha)C-12 cross-section in the 8-10 MeV energy region by using a LCB gamma-ray beam is also discussed. A measurement of the O-16(gamma, alpha)C-12 cross-section will enable the reaction rate of C-12(alpha, gamma)O-16 to be determined with significantly improved precision compared to previous experiments.
引用
收藏
页码:126 / 137
页数:12
相关论文
共 50 条
  • [1] Gamma-ray imaging with the Compton-backscattered laser photons
    Toyokawa, H
    Ohgaki, H
    Shima, T
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2002, 49 (01) : 182 - 187
  • [2] HIGH-ENERGY GAMMA-RAY BEAMS FROM COMPTON BACKSCATTERED LASER-LIGHT
    SANDORFI, AM
    LEVINE, MJ
    THORN, CE
    GIORDANO, G
    MATONE, G
    SCHAERF, C
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1983, 30 (04) : 3083 - 3087
  • [3] Nuclear Structure Studies with Gamma-Ray Beams
    Tonchev, Anton
    Bhatia, Chitra
    Kelley, John
    Raut, Rajarshi
    Rusev, Gencho
    Tornow, Werner
    Tsoneva, Nadia
    CGS15 - CAPTURE GAMMA-RAY SPECTROSCOPY AND RELATED TOPICS, 2015, 93
  • [4] Application of Laser Compton Scattered gamma-ray beams to nondestructive detection and assay of nuclear material
    R. Hajima
    T. Hayakawa
    T. Shizuma
    C.T. Angell
    R. Nagai
    N. Nishimori
    M. Sawamura
    S. Matsuba
    A. Kosuge
    M. Mori
    M. Seya
    The European Physical Journal Special Topics, 2014, 223 : 1229 - 1236
  • [5] Application of Laser Compton Scattered gamma-ray beams to nondestructive detection and assay of nuclear material
    Hajima, R.
    Hayakawa, T.
    Shizuma, T.
    Angell, C. T.
    Nagai, R.
    Nishimori, N.
    Sawamura, M.
    Matsuba, S.
    Kosuge, A.
    Mori, M.
    Seya, M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (06): : 1229 - 1236
  • [6] Nuclear astrophysics with gamma-ray line astronomy
    Diehl, R.
    THIRD EUROPEAN SUMMER SCHOOL ON EXPERIMENTAL NUCLEAR ASTROPHYSICS, 2007, 27 (83-102): : 83 - 102
  • [7] MAX -: a gamma-ray lens for nuclear astrophysics
    von Ballmoos, P
    Halloin, H
    Skinner, G
    Smither, B
    Paul, J
    Abrosimov, N
    Alvarez, J
    Astier, P
    Bastie, P
    Barret, D
    Bazzano, A
    Boutonnet, A
    Brousse, P
    Cordier, B
    Courvoisier, T
    DiDocco, G
    Giuliani, A
    Hamelin, B
    Hernanz, M
    Jean, P
    Isern, J
    Knödlseder, J
    Laurent, P
    Lebrun, F
    Marcowith, A
    Martinot, V
    Natalucci, L
    Olive, JF
    Pain, R
    Sadat, R
    Sainct, H
    Ubertini, P
    Vedrenne, G
    OPTICS FOR EUV, X-RAY AND GAMMA-RAY ASTRONOMY, 2004, 5168 : 482 - 491
  • [8] Design of gamma-ray optics for nuclear astrophysics
    Buis, EJ
    Beijersbergen, M
    Bavdaz, M
    Lumb, D
    Vacanti, G
    UV AND GAMMA-RAY SPACE TELESCOPE SYSTEMS, PTS 1 AND 2, 2004, 5488 : 691 - 699
  • [9] An optical readout TPC (O-TPC) for studies in nuclear astrophysics with gamma-ray beams at HIγS
    Gai, M.
    Ahmed, M. W.
    Stave, S. C.
    Zimmerman, W. R.
    Breskin, A.
    Bromberger, B.
    Chechik, R.
    Dangendorf, V.
    Delbar, Th
    France, R. H., III
    Henshaw, S. S.
    Kading, T. J.
    Martel, P. P.
    McDonald, J. E. R.
    Seo, P-N
    Tittelmeier, K.
    Weller, H. R.
    Young, A. H.
    JOURNAL OF INSTRUMENTATION, 2010, 5
  • [10] Laue optics for nuclear astrophysics: New detector requirements for focused gamma-ray beams
    Barriere, N.
    von Ballmoos, P.
    Abrosimov, N. V.
    Bastie, P.
    Camus, T.
    Courtois, P.
    Jentschel, M.
    Knoedlseder, J.
    Natalucci, L.
    Roudil, G.
    Rousselle, J.
    Wunderer, C. B.
    Kurlov, V. N.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 610 (01): : 283 - 286