PARAS: A Parameter Space Framework for Online Association Mining

被引:6
|
作者
Lin, Xika [1 ]
Mukherji, Abhishek [1 ]
Rundensteiner, Elke A. [1 ]
Ruiz, Carolina [1 ]
Ward, Matthew O. [1 ]
机构
[1] Worcester Polytechn Inst, Dept Comp Sci, 100 Inst Rd, Worcester, MA 01609 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2013年 / 6卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.14778/2535569.2448953
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Association rule mining is known to be computationally intensive, yet real-time decision-making applications are increasingly intolerant to delays. In this paper, we introduce the parameter space model, called PARAS. PARAS enables efficient rule mining by compactly maintaining the final rulesets. The PARAS model is based on the notion of stable region abstractions that form the coarse granularity ruleset space. Based on new insights on the redundancy relationships among rules, PARAS establishes a surprisingly compact representation of complex redundancy relationships while enabling efficient redundancy resolution at query-time. Besides the classical rule mining requests, the PARAS model supports three novel classes of exploratory queries. Using the proposed PSpace index, these exploratory query classes can all be answered with near real-time responsiveness. Our experimental evaluation using several benchmark datasets demonstrates that PARAS achieves 2 to 5 orders of magnitude improvement over state-of-theart approaches in online association rule mining.
引用
收藏
页码:193 / 204
页数:12
相关论文
共 50 条
  • [1] PARASc: a parameter space-driven approach for complete association rule mining
    Lin, Xika
    Mukherji, Abhishek
    Rundensteiner, Elke A.
    Ward, Matthew O.
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2022, 14 (04) : 407 - 438
  • [2] Online association rule mining
    Hidber, C
    SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999: SIGMOD99: PROCEEDINGS OF THE 1999 ACM SIGMOD - INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 1999, : 145 - 156
  • [3] A framework for mining association rules
    Luo, J
    Rajasekaran, S
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 4, PROCEEDINGS, 2005, 3684 : 509 - 517
  • [4] A Novel Framework for Unification of Association Rule Mining, Online Analytical Processing and Statistical Reasoning
    Sharma, Rahul
    Kaushik, Minakshi
    Peious, Sijo Arakkal
    Bazin, Alexandre
    Shah, Syed Attique
    Fister, Iztok
    Ben Yahia, Sadok
    Draheim, Dirk
    IEEE ACCESS, 2022, 10 : 12792 - 12813
  • [5] A Parameter Space Framework for Online Outlier Detection Over High-Volume Data Streams
    Zhao, Guanzhe
    Yu, Yanwei
    Song, Peng
    Zhao, Geng
    Ji, Zhe
    IEEE ACCESS, 2018, 6 : 38124 - 38136
  • [6] A framework for visualizing association mining results
    Ertek, Gurdal
    Demiriz, Ayhan
    COMPUTER AND INFORMATION SCIENCES - ISCIS 2006, PROCEEDINGS, 2006, 4263 : 593 - 602
  • [7] Mining spatial association rules with no distance parameter
    Bembenik, Robert
    Rybinski, Henryk
    INTELLIGENT INFORMATION PROCESSING AND WEB MINING, PROCEEDINGS, 2006, : 499 - +
  • [8] Mining association rules dynamically in online environment
    Wang, MT
    EIGHTH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2003, : 144 - 148
  • [9] Fast online dynamic association rule mining
    Woon, YK
    Ng, WK
    Das, A
    SECOND INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS ENGINEERING, VOL I, PROCEEDINGS, 2002, : 278 - 287
  • [10] Improvement of online association rule mining algorithm
    2000, East China Univ of Sci and Technology, China (26):