THE CLOSURE OF CONVERGENCE SETS FOR CONTINUED FRACTIONS ARE CONVERGENCE SETS

被引:0
|
作者
LORENTZEN, L [1 ]
机构
[1] UNIV TRONDHEIM,DIV MATH SCI,N-7034 TRONDHEIM,NORWAY
关键词
D O I
10.1017/S0013091500018666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if OMEGA is a simple convergence set for continued fractions K(a(n)/b(n)), then the closure OMEGABAR of OMEGA is also such a convergence set. Actually, we prove more: every continued fraction K(a(n)/b(n)) has a ''neighbourhood'' {D(n)}infinity/n=1; D(n)={z is-an-element-of C; \z-a(n)\less-than-or-equal-to r(n)} x {z is-an-element-of C; \z-b(n)\less-than-or-equal-to s(n)} where r(n)>0 and s(n)>0, with the following property: Every continued fraction from {D(n)} converges if and only if K(a(n)/b(n)) converges.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 50 条