ON THE INFINITUDE OF LUCAS PSEUDOPRIMES

被引:0
|
作者
BRUCKMAN, PS
机构
来源
FIBONACCI QUARTERLY | 1994年 / 32卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:153 / 154
页数:2
相关论文
共 50 条
  • [1] LUCAS PSEUDOPRIMES
    BAILLIE, R
    WAGSTAFF, SS
    MATHEMATICS OF COMPUTATION, 1980, 35 (152) : 1391 - 1417
  • [2] CONDITIONAL LUCAS PSEUDOPRIMES
    Sahin, Murat
    Webb, William
    ARS COMBINATORIA, 2012, 103 : 129 - 136
  • [3] LUCAS PSEUDOPRIMES ARE ODD
    BRUCKMAN, PS
    FIBONACCI QUARTERLY, 1994, 32 (02): : 155 - 157
  • [4] ON GENERALIZED LUCAS PSEUDOPRIMES
    JOO, I
    ACTA MATHEMATICA HUNGARICA, 1990, 55 (3-4) : 279 - 284
  • [5] FROBENIUS, LUCAS, AND DICKSON PSEUDOPRIMES
    Somer, Lawrence
    Krizek, Michal
    FIBONACCI QUARTERLY, 2022, 60 (04): : 325 - 343
  • [6] THE DISTRIBUTION OF LUCAS AND ELLIPTIC PSEUDOPRIMES
    GORDON, DM
    POMERANCE, C
    MATHEMATICS OF COMPUTATION, 1991, 57 (196) : 825 - 838
  • [7] PSEUDOPRIMES WITH RESPECT TO LUCAS SEQUENCES
    ROTKIEWICZ, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1973, 21 (09): : 793 - 797
  • [8] On Lucas d-pseudoprimes
    Somer, L
    APPLICATIONS OF FIBONACCI NUMBERS, VOL 7, 1998, : 369 - 375
  • [9] LUCAS PSEUDOPRIMES OF SPECIAL TYPES
    Somer, Lawrence
    FIBONACCI QUARTERLY, 2008, 46-47 (03): : 198 - 206
  • [10] Arithmetical progressions formed by Lucas pseudoprimes
    Rotkiewicz, A
    NUMBER THEORY: DIOPHANTINE, COMPUTATIONAL AND ALGEBRAIC ASPECTS, 1998, : 465 - 472