Finite Factorised Groups with Partially Solvable P-Subnormal Subgroups

被引:0
|
作者
Monakhov, V. [1 ]
Kniahina, V. [2 ]
机构
[1] Gomel F Scorina State Univ, Ul Sovetskaya 104, Gomel 246019, BELARUS
[2] Gomel Engn Inst MES Belarus, Gomel 246035, BELARUS
关键词
Finite groups; P-subnormal subgroups; product of groups;
D O I
10.1134/S1995080215040101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup A of a group G is called P-subnormal in G whenever either A - G or there exists a chain of subgroups A = A(0) subset of A(1) subset of . . . subset of A(n) = G such that |A(i) : A(i-1)| is a prime number for all i. We study a finite group G = AB on assuming that A and B are P-subnormal subgroups with fixed properties. In particular, we show that G is r-solvable if A and B are r-solvable.
引用
收藏
页码:441 / 445
页数:5
相关论文
共 50 条
  • [1] Finite groups with P-subnormal subgroups
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    RICERCHE DI MATEMATICA, 2013, 62 (02) : 307 - 322
  • [2] ON THE PRODUCTS OF P-SUBNORMAL SUBGROUPS OF FINITE GROUPS
    Vasil'ev, A. F.
    Vasil'eva, T. I.
    Tyutyanov, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (01) : 47 - 54
  • [3] P-subnormal subgroups and the structure of finite groups
    Chen, Ruifang
    Zhao, Xianhe
    Li, Xiaoli
    RICERCHE DI MATEMATICA, 2023, 72 (02) : 771 - 778
  • [4] Finite Groups with P-Subnormal Schmidt Subgroups
    Yi, Xiaolan
    Xu, Zhuyan
    Kamornikov, S. F.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (SUPPL 1) : S231 - S238
  • [5] On σ-subnormal subgroups of factorised finite groups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Pedraza-Aguilera, M. C.
    Yi, X.
    JOURNAL OF ALGEBRA, 2020, 559 : 195 - 202
  • [6] On p-subnormal subgroups of finite p-soluble groups
    Gómez-Fernández, M
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (03): : 537 - 547
  • [7] Finite groups with generalized P-subnormal second maximal subgroups
    Kovaleva, Viktoria A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (03)
  • [8] Finite Groups All of Whose Subgroups are P-Subnormal or TI-Subgroups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Perez-Calabuig, V.
    Yi, X.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
  • [9] Finite groups in which all p-subnormal subgroups form a lattice
    Ezquerro, LM
    GomezFernandez, M
    ARCHIV DER MATHEMATIK, 1997, 68 (01) : 1 - 6
  • [10] Finite groups in which all p-subnormal subgroups form a lattice
    L. M. Ezquerro
    M. Gómez-Fernández
    Archiv der Mathematik, 1997, 68 : 1 - 6