NONLINEAR MODELS OF TEMPERATURE SENSOR DYNAMICS

被引:8
|
作者
MINKINA, W
机构
[1] Technical University of Czȩstochowa, Faculty of Electricity, Department of Electrical Metrology, PL-42 200 Czȩstochowa
关键词
D O I
10.1016/0924-4247(92)80122-J
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To describe temperature sensor dynamics, linear models have been widely used in the literature of the subject. These models are derived on the basis of transmittance and they express the sensor response to a unit temperature step. However, such linear models can only be applied for a small temperature increase, ranging from 20 to 30-degrees-C, because the temperature sensor can then be regarded as a linear element. This paper presents non-linear models which adequately describe temperature sensor dynamics within the temperature increase range (of random values) where the sensor can be considered as a linear or a non-linear element. These models are derived on the basis of the Stone-Weierstrass theorem describing uniform approximations of continuous functions. The use of non-linear models in the dynamic method of measuring high temperatures beyond the permissible sensor range is given as an example.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条
  • [1] NONLINEAR MODELS OF DNA DYNAMICS
    CHRISTIANSEN, PL
    MUTO, V
    PHYSICA D-NONLINEAR PHENOMENA, 1993, 68 (01) : 93 - 96
  • [2] NONLINEAR MODELS OF ELECTROENCEPHALOGRAPHIC DYNAMICS
    GONZALEZ, JA
    CARBO, JR
    LEGANOA, M
    REVISTA MEXICANA DE FISICA, 1994, 40 (04) : 627 - 636
  • [3] Nonlinear dynamics of a resonant gas sensor
    Nayfeh, A. H.
    Ouakad, H. M.
    Najar, F.
    Choura, S.
    Abdel-Rahman, E. M.
    NONLINEAR DYNAMICS, 2010, 59 (04) : 607 - 618
  • [4] Nonlinear dynamics of a resonant gas sensor
    A. H. Nayfeh
    H. M. Ouakad
    F. Najar
    S. Choura
    E. M. Abdel-Rahman
    Nonlinear Dynamics, 2010, 59 : 607 - 618
  • [5] NONLINEAR DNA DYNAMICS - HIERARCHY OF THE MODELS
    YAKUSHEVICH, LV
    PHYSICA D, 1994, 79 (01): : 77 - 86
  • [6] Ordering dynamics of nonlinear voter models
    Ramirez, Lucia S.
    Vazquez, Federico
    San Miguel, Maxi
    Galla, Tobias
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [7] On the nonlinear dynamics of shift gearbox models
    Georg Jehle
    Alexander Fidlin
    Acta Mechanica, 2018, 229 : 2327 - 2341
  • [8] Dynamics of Two Nonlinear Oligopoly Models
    Ibrahim, Adyda
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 350 - 356
  • [9] Nonlinear Dynamics: Models, Behavior, and Techniques
    Baleanu, Dumitru
    Kalmar-Nagy, Tamas
    Sapsis, Themistoklis P.
    Yabuno, Hiroshi
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (09):
  • [10] On the reduction of nonlinear structural dynamics models
    Burton, TD
    Rhee, W
    JOURNAL OF VIBRATION AND CONTROL, 2000, 6 (04) : 531 - 556