IDEAL PENALTY FUNCTION FOR CONSTRAINED OPTIMIZATION

被引:0
|
作者
FLETCHER, R
机构
[1] UNIV DUNDEE, DUNDEE, SCOTLAND
[2] ATOM ENERGY RES ESTAB, HARWELL, ENGLAND
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:319 / 342
页数:24
相关论文
共 50 条
  • [1] CONSTRAINED OPTIMIZATION USING A NONDIFFERENTIABLE PENALTY FUNCTION
    CONN, AR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) : 760 - 784
  • [2] CONSTRAINED ARRAY OPTIMIZATION BY PENALTY FUNCTION TECHNIQUES
    WINKLER, LP
    SCHWARTZ, M
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1974, 55 (05): : 1042 - 1048
  • [3] Parameterless Penalty Function for Solving Constrained Evolutionary Optimization
    Al Jadaan, Omar
    Rajamani, Lakshmi
    Rao, C. R.
    HIMA: 2009 IEEE WORKSHOP ON HYBRID INTELLIGENT MODELS AND APPLICATIONS, 2009, : 56 - +
  • [4] A NONITERATIVE PENALTY-FUNCTION TECHNIQUE FOR CONSTRAINED OPTIMIZATION
    SANTI, LM
    TOWNSEND, MA
    JOHNSON, GE
    ENGINEERING OPTIMIZATION, 1982, 6 (02) : 63 - 76
  • [5] New Penalty Function with Differential Evolution for Constrained Optimization
    Deng, Changshou
    Liang, Changyong
    Zhao, Bingyan
    Deng, Anyuan
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 5304 - +
  • [6] Combining Penalty Function with Modified Chicken Swarm Optimization for Constrained Optimization
    Chen, Y. L.
    He, P. L.
    Zhang, Y. H.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INFORMATION SCIENCES, MACHINERY, MATERIALS AND ENERGY (ICISMME 2015), 2015, 126 : 1899 - 1907
  • [7] Fuzzy penalty function approach for constrained function optimization with evolutionary algorithms
    Wu, BL
    Yu, XH
    Liu, L
    8TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING, VOLS 1-3, PROCEEDING, 2001, : 299 - 304
  • [8] A FILLED PENALTY FUNCTION METHOD FOR SOLVING CONSTRAINED OPTIMIZATION PROBLEMS
    Tang, Jiahui
    Xu, Yifan
    Wang, Wei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (02): : 809 - 825
  • [9] A modified exact smooth penalty function for nonlinear constrained optimization
    Liu Bingzhuang
    Zhao Wenling
    Journal of Inequalities and Applications, 2012
  • [10] Constrained optimization of the magnetostrictive actuator with the use of penalty function method
    Knypinski, Lukasz
    Kowalski, Krzysztof
    Nowak, Lech
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2018, 37 (05) : 1575 - 1584