Kernel-Based Texture in Remote Sensing Image Classification

被引:52
|
作者
Warner, Timothy [1 ]
机构
[1] West Virginia Univ, Dept Geol & Geog, 330 Brooks Hall, Morgantown, WV 26506 USA
来源
GEOGRAPHY COMPASS | 2011年 / 5卷 / 10期
关键词
D O I
10.1111/j.1749-8198.2011.00451.x
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Texture has been of great interest to remote sensing analysts for more than three decades. This paper is a review of texture approaches that are based on a moving window, or kernel, and that generate a summary measure of local spatial variation, which is assigned to the central pixel of the kernel. Texture methods are challenging to implement, partly because of the many parameters that need to be set prior to running a texture analysis. The list of parameters includes the texture order, metric, kernel size, and spectral band. For second-order metrics, additional parameters that need to be set include radiometric re-quantization, displacement, and angle. Although few general rules of thumb can be provided in selecting texture analysis parameters, understanding the conceptual role of these parameters helps illuminate the options available. In addition, future opportunities in object-oriented texture, adaptive texture measures, and multi-scale texture fusion offer the potential for addressing some of the inherent challenges in the application of texture in image analysis.
引用
收藏
页码:781 / 798
页数:18
相关论文
共 50 条
  • [1] Kernel-based extreme learning machine for remote-sensing image classification
    Pal, Mahesh
    Maxwell, Aaron E.
    Warner, Timothy A.
    REMOTE SENSING LETTERS, 2013, 4 (09) : 853 - 862
  • [2] Texture Classification Using Kernel-Based Techniques
    Fernandez-Lozano, Carlos
    Seoane, Jose A.
    Gestal, Marcos
    Gaunt, Tom R.
    Campbell, Cohn
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I, 2013, 7902 : 427 - +
  • [3] Remote Sensing Image Automatic Classification Based on Texture Feature
    Zhan, Yunjun
    Liang, Yujing
    Huang, Jiejun
    APPLIED INFORMATICS AND COMMUNICATION, PT 5, 2011, 228 : 165 - 172
  • [4] Remote sensing image automatic classification based on texture feature
    Zhan, Yunjun
    Liang, Yujing
    Huang, Jiejun
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL V, 2010, : 112 - 115
  • [5] Kernel-based methods for hyperspectral image classification
    Camps-Valls, G
    Bruzzone, L
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06): : 1351 - 1362
  • [6] Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection
    Camps-Valls, Gustavo
    Gomez-Chova, Luis
    Munoz-Mari, Jordi
    Rojo-Alvarez, Jose Luis
    Martinez-Ramon, Manel
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (06): : 1822 - 1835
  • [7] A spatial-spectral kernel-based approach for the classification of remote-sensing images
    Fauvel, M.
    Chanussot, J.
    Benediktsson, J. A.
    PATTERN RECOGNITION, 2012, 45 (01) : 381 - 392
  • [8] Texture classification using feature selection and kernel-based techniques
    Carlos Fernandez-Lozano
    Jose A. Seoane
    Marcos Gestal
    Tom R. Gaunt
    Julian Dorado
    Colin Campbell
    Soft Computing, 2015, 19 : 2469 - 2480
  • [9] Texture classification using feature selection and kernel-based techniques
    Fernandez-Lozano, Carlos
    Seoane, Jose A.
    Gestal, Marcos
    Gaunt, Tom R.
    Dorado, Julian
    Campbell, Colin
    SOFT COMPUTING, 2015, 19 (09) : 2469 - 2480
  • [10] Multiple Kernel Learning for Remote Sensing Image Classification
    Niazmardi, Saeid
    Demir, Begum
    Bruzzone, Lorenzo
    Safari, Abdolreza
    Homayouni, Saeid
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1425 - 1443