A NUMERICAL-ANALYSIS OF ROLLING-CONTACT PROBLEMS USING QUASI-STATIC VARIATIONAL FORMULATION

被引:5
|
作者
ZOCHOWSKI, A
MYSLINSKI, A
机构
关键词
D O I
10.1016/0045-7949(91)90396-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper deals with the numerical solution of a class of the rolling contact problems. We shall consider the contact of the perfectly rigid wheel with an elastic rail on a rigid foundation. We propose a quasistatic approach to solve this contact problem. This approach is based on an assumption that for the observer moving with the rolling body the displacement of the supporting foundation is independent on time. The elliptic variational inequality formulation of this contact problem is provided. Using duality theory and the regularized relation between tangent and normal components of the contact stress we formulate this problem as an optimization problem with respect to the normal contact stress. The finite element method is used as a discretization method. The Pschenichnyj method combined with Newtonian method is used to solve numerically this discretized optimization problem. Numerical examples are given.
引用
收藏
页码:1261 / 1266
页数:6
相关论文
共 50 条
  • [1] Numerical implementation of the variational formulation for quasi-static brittle fracture
    Bourdin, Blaise
    INTERFACES AND FREE BOUNDARIES, 2007, 9 (03) : 411 - 430
  • [2] Numerical analysis of quasi-static unilateral contact problems with local friction
    Rocca, R
    Cocou, M
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (04) : 1324 - 1342
  • [3] An alternative formulation for quasi-static frictional and cohesive contact problems
    P. Areias
    A. Pinto da Costa
    T. Rabczuk
    F. J. M. Queirós de Melo
    D. Dias-da-Costa
    Mourad Bezzeghoud
    Computational Mechanics, 2014, 53 : 807 - 824
  • [4] An alternative formulation for quasi-static frictional and cohesive contact problems
    Areias, P.
    Pinto da Costa, A.
    Rabczuk, T.
    Queiros de Melo, F. J. M.
    Dias-da-Costa, D.
    Bezzeghoud, Mourad
    COMPUTATIONAL MECHANICS, 2014, 53 (04) : 807 - 824
  • [5] NUMERICAL-ANALYSIS OF THE EQUATIONS OF SMALL STRAINS QUASI-STATIC ELASTOVISCOPLASTICITY
    BLANCHARD, D
    LETALLEC, P
    NUMERISCHE MATHEMATIK, 1986, 50 (02) : 147 - 169
  • [6] Qualitative and numerical analysis of quasi-static problems in elastoplasticity
    Han, WM
    Reddy, BD
    Schroeder, GC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) : 143 - 177
  • [7] Existence of a class of variational inequalities modelling quasi-static viscoelastic contact problems
    Peng, Zijia
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (05):
  • [8] Efficient numerical methods to approach solutions of quasi-static contact problems
    Ndjansi, Lionel Ouya
    Tchoualag, Laurent
    Woukeng, Jean Louis
    RESULTS IN APPLIED MATHEMATICS, 2025, 25
  • [9] Numerical analysis of a quasi-static contact problem for a thermoviscoelastic beam
    Copetti, M. I. M.
    Fernandez, J. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (14) : 4165 - 4173
  • [10] A peridynamics formulation for quasi-static fracture and contact in rock
    Rabczuk, Timon
    Ren, Huilong
    ENGINEERING GEOLOGY, 2017, 225 : 42 - 48