Plane-Strain crack-tip stress solutions for anisotropic perfectly-plastic materials are presented. These solutions are obtained using the plane-strain slip-line theory developed by J. R. Rice. The plastic anisotropy is described by the Hill quadratic yield condition. The crack-tip stress solutions under symmetric (Mode I) and anti-symmetric (Mode II) conditions agree well with the low-hardening solutions for the corresponding power-law hardening materials. The crack-tip stress solutions under mixed Mode I and II conditions are also presented. All the solutions indicate that the general features of the slip-line field near a crack tip in orthotropic plastic materials with the elliptical yield contours in the Mohr plane are the same as those associated with isotropic plastic materials.