Some Steiner concepts on lexicographic products of graphs

被引:5
|
作者
Anand, Bijo S. [1 ,2 ]
Changat, Manoj [3 ]
Peterin, Iztok [4 ]
Narasimha-Shenoi, Prasanth G. [5 ]
机构
[1] Sree Narayana Coll Women, Dept Math, Kollam 691001, India
[2] Univ Kerala, Dept Futures Studies, Trivandrum 695034, Kerala, India
[3] Univ Kerala, Dept Futures Studies, Trivandrum 695581, Kerala, India
[4] Univ Maribor, FEECS, SLO-2000 Maribor, Slovenia
[5] Govt Coll, Dept Math, Chittur 678104, Palakkad, India
关键词
Lexicographic product; Steiner convexity; Steiner set; Steiner distance;
D O I
10.1142/S1793830914500608
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph and W a subset of V(G). A subtree with the minimum number of edges that contains all vertices of W is a Steiner tree for W. The number of edges of such a tree is the Steiner distance of W and union of all vertices belonging to Steiner trees for W form a Steiner interval. We describe both of these for the lexicographic product of graphs. We also give a complete answer for the following invariants with respect to the Steiner convexity: the Steiner number, the rank, the hull number, and the Caratheodory number, and a partial answer for the Radon number.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Vertex types in some lexicographic products of graphs
    Andelic, Milica
    Ashraf, Firouzeh
    da Fonseca, Carlos M.
    Simic, Slobodan K.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2282 - 2296
  • [2] ON EIGENSHARPNESS AND ALMOST EIGENSHARPNESS OF LEXICOGRAPHIC PRODUCTS OF SOME GRAPHS
    Abbasi, Ahmad
    Taleshani, Mona Gholamnia
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (03) : 685 - 695
  • [3] On wreathed lexicographic products of graphs
    Kaschek, Roland
    DISCRETE MATHEMATICS, 2010, 310 (08) : 1275 - 1281
  • [4] THE COPNUMBER FOR LEXICOGRAPHIC PRODUCTS AND SUMS OF GRAPHS
    Schroeder, Bernd S. W.
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2014, 9 (02) : 45 - 49
  • [5] Convex Sets in Lexicographic Products of Graphs
    Anand, Bijo S.
    Changat, Manoj
    Klavzar, Sandi
    Peterin, Iztok
    GRAPHS AND COMBINATORICS, 2012, 28 (01) : 77 - 84
  • [6] Convex Sets in Lexicographic Products of Graphs
    Bijo S. Anand
    Manoj Changat
    Sandi Klavžar
    Iztok Peterin
    Graphs and Combinatorics, 2012, 28 : 77 - 84
  • [7] Helly and exchange numbers of geodesic and Steiner convexities in lexicographic product of graphs
    Anand, Bijo S.
    Changat, Manoj
    Narasimha-Shenoi, Prasanth G.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [8] Omega Indices of Strong and Lexicographic Products of Graphs
    Huilgol, Medha Itagi
    D'Souza, Grace Divya
    Cangul, Ismail Naci
    CURRENT ORGANIC SYNTHESIS, 2025, 22 (02) : 143 - 158
  • [9] Broadcast domination of lexicographic and modular products of graphs
    Sen, Jishnu
    Kola, Srinivasa Rao
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 177 - 181
  • [10] Some diameter notions in lexicographic product of graphs
    Chithra, M. R.
    Menon, Manju K.
    Vijayakumar, A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (02) : 258 - 268