ON THE ULTRABORNOLOGICAL PROPERTY OF THE VECTOR-VALUED BOUNDED-FUNCTION SPACE

被引:1
|
作者
FERRANDO, JC [1 ]
机构
[1] UNIV POLITECN VALENCIA,EU INFORMAT,DEPT MATEMAT APLICADA,E-46071 VALENCIA,SPAIN
关键词
D O I
10.7146/math.scand.a-12461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If OMEGA is a set, SIGMA a sigma-algebra of subsets of OMEGA and X is a normed space, we show that the space K(SIGMA, X) of all bounded X-countably valued SIGMA-measurable functions on OMEGA endowed with the supremum-norm is ultrabornological if and only if X is ultrabornological. As a consequence, the space l(infinity)(X) of all bounded sequences in X with the supremum-norm is ultrabornological if and only if X is ultrabornological.
引用
收藏
页码:156 / 160
页数:5
相关论文
共 50 条