Feature Selection for Microarray Gene Expression Data Using Simulated Annealing Guided by the Multivariate Joint Entropy

被引:14
|
作者
Fernando Gonzalez-Navarro, Felix [1 ]
Belanche-Munoz, Lluis A. [2 ]
机构
[1] Univ Autonoma Baja California, Inst Ingn, Mexicali, Baja California, Mexico
[2] Univ Politecn Cataluna, Dept Llenguatges & Sistemes Informat, Barcelona, Spain
来源
COMPUTACION Y SISTEMAS | 2014年 / 18卷 / 02期
关键词
Feature selection; microarray gene expression data; multivariate joint entropy; simulated annealing;
D O I
10.13053/CyS-18-2-2014-032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Microarray classification poses many challenges for data analysis, given that a gene expression data set may consist of dozens of observations with thousands or even tens of thousands of genes. In this context, feature subset selection techniques can be very useful to reduce the representation space to one that is manageable by classification techniques. In this work we use the discretized multivariate joint entropy as the basis for a fast evaluation of gene relevance in a Microarray Gene Expression context. The proposed algorithm combines a simulated annealing schedule specially designed for feature subset selection with the incrementally computed joint entropy, reusing previous values to compute current feature subset relevance. This combination turns out to be a powerful tool when applied to the maximization of gene subset relevance. Our method delivers highly interpretable solutions that are more accurate than competing methods. The algorithm is fast, effective and has no critical parameters. The experimental results in several public-domain microarray data sets show a notoriously high classification performance and low size subsets, formed mostly by biologically meaningful genes. The technique is general and could be used in other similar scenarios.
引用
收藏
页码:275 / 293
页数:19
相关论文
共 50 条
  • [1] Feature Selection in Microarray Gene Expression Data Using Fisher Discriminant Ratio
    Sarbazi-Azad, Saeed
    Abadeh, Mohammad Saniee
    Abadi, Mehdi Irannejad Najaf
    2018 8TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2018, : 225 - 230
  • [2] A hybrid feature selection approach for microarray gene expression data
    Tan, Feng
    Fu, Xuezheng
    Wang, Hao
    Zhang, Yanqing
    Bourgeois, Anu
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 678 - 685
  • [3] Quality of feature selection based on microarray gene expression data
    Maciejewski, Henryk
    COMPUTATIONAL SCIENCE - ICCS 2008, PT 3, 2008, 5103 : 140 - 147
  • [4] Simulated annealing aided genetic algorithm for gene selection from microarray data
    Marjit, Shyam
    Bhattacharyya, Trinav
    Chatterjee, Bitanu
    Sarkar, Ram
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [5] Multivariate feature selection using random subspace classifiers for gene expression data
    Kamath, Vidya P.
    Hall, Lawrence O.
    Yeatman, Timothy J.
    Eschrich, Steven. A.
    PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, 2007, : 1041 - +
  • [6] Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data
    Haznedar, Bulent
    Arslan, Mustafa Turan
    Kalinli, Adem
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (03) : 497 - 509
  • [7] Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data
    Bulent Haznedar
    Mustafa Turan Arslan
    Adem Kalinli
    Medical & Biological Engineering & Computing, 2021, 59 : 497 - 509
  • [8] Feature Selection of Microarray Data Using Simulated Kalman Filter with Mutation
    Zamri, Nurhawani Ahmad
    Aziz, Nor Azlina Ab
    Bhuvaneswari, Thangavel
    Aziz, Nor Hidayati Abdul
    Ghazali, Anith Khairunnisa
    PROCESSES, 2023, 11 (08)
  • [9] Improving feature subset selection using a genetic algorithm for microarray gene expression data
    Tan, Feng
    Fu, Xuezheng
    Zhang, Yanqing
    Bourgeois, Anu G.
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2514 - 2519
  • [10] Hybrid feature selection using micro genetic algorithm on microarray gene expression data
    Pragadeesh, C.
    Jeyaraj, Rohana
    Siranjeevi, K.
    Abishek, R.
    Jeyakumar, G.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (03) : 2241 - 2246