A SIGNAL REGULARITY-BASED AUTOMATED SEIZURE PREDICTION ALGORITHM USING LONG-TERM SCALP EEG RECORDINGS

被引:0
|
作者
Chien, Jui-Hong [1 ,2 ]
Shiau, Deng -Shan [3 ]
Halford, J. J. [2 ]
Kelly, K. M. [4 ,5 ,6 ,7 ]
Kern, R. T. [2 ]
Yang, M. C. K. [8 ]
Zhang, Jicong [9 ]
Sackellares, J. Ch. [2 ]
Pardalos, P. M. [1 ,9 ,10 ]
机构
[1] Univ Florida, Pruitt Family Dept Biomed Engn, Gainesville, FL USA
[2] Optima Neurosci Inc, Gainesville, FL USA
[3] Sci Affairs, Gainesville, FL USA
[4] Med Univ South Carolina, Charleston, SC 29425 USA
[5] Drexel Univ, Coll Med, Philadelphia, PA 19104 USA
[6] Allegheny Gen Hosp, Pittsburgh, PA 15212 USA
[7] Allegheny Singer Res Inst, Pittsburgh, PA 15212 USA
[8] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[9] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
[10] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL USA
关键词
epileptic seizure; seizure warning; scalp electroencephalogram; brain dynamics;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this study was to evaluate a signal regularity-based automated seizure prediction algorithm for scalp EEG. Signal regularity was quantified using the Pattern Match Regularity Statistic (PMRS), a statistical measure. The primary feature of the prediction algorithm is the degree of convergence in PMRS ("PMRS entrainment") among the electrode groups determined in the algorithm training process. The hypothesis is that the PMRS entrainment increases during the transition between interictal and ictal states, and therefore may serve as an indicator for prediction of an impending seizure.
引用
收藏
页码:586 / 597
页数:12
相关论文
共 50 条
  • [1] A signal regularity-based automated seizure prediction algorithm using long-term scalp EEG recordings
    Chien J.-H.
    Shiau D.-S.
    Halford J.J.
    Kelly K.M.
    Kern R.T.
    Yang M.C.K.
    Zhang J.
    Sackellares J.C.
    Pardalos P.M.
    Cybernetics and Systems Analysis, 2011, 47 (4) : 586 - 597
  • [2] Signal regularity-based automated seizure detection system for scalp EEG monitoring 1
    Shiau D.-S.
    Halford J.J.
    Kelly K.M.
    Kern R.T.
    Inman M.
    Chien J.-H.
    Pardalos P.M.
    Yang M.C.K.
    Sackellares J.Ch.
    Cybernetics and Systems Analysis, 2010, 46 (06) : 922 - 935
  • [3] Effects of prediction horizon on performance of automated seizure prediction algorithm in scalp EEG recordings
    Sackellares, JC
    Shiau, DS
    Carney, PR
    Principe, JC
    Pardalos, PM
    Suharitdamrong, W
    Iasemidis, LD
    EPILEPSIA, 2005, 46 : 219 - 219
  • [4] An Algorithm for the Automated Detection of Epileptic Seizures in Long-Term Scalp EEG Recordings in Clinical Routine
    Hopfengaertner, R.
    Kerling, F.
    Greim, V.
    Stefan, H.
    KLINISCHE NEUROPHYSIOLOGIE, 2008, 39 (03) : 175 - 182
  • [5] Seizure Prediction using Long-Term Fragmented Intracranial Canine and Human EEG Recordings
    Zhang, Zisheng
    Parhi, Keshab K.
    2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 361 - 365
  • [6] Evaluation of two seizure prediction methods based on long-term intracranial EEG recordings
    Feldwisch, H.
    Winterhalder, M.
    Schelter, B.
    Nawrath, J.
    Wohlmuth, J.
    Brandt, A.
    Timmer, J.
    Schulze-Bonhage, A.
    EPILEPSIA, 2006, 47 : 72 - 72
  • [7] Patient-Specific Epileptic Seizure Prediction in Long-Term Scalp EEG Signal Using Multivariate Statistical Process Control
    Rukhsar, S.
    Khan, Y. U.
    Farooq, O.
    Sarfraz, M.
    Khan, A. T.
    IRBM, 2019, 40 (06) : 320 - 331
  • [8] Automated Real-Time Epileptic Seizure Detection in Scalp EEG Recordings Using an Algorithm Based on Wavelet Packet Transform
    Zandi, Ali Shahidi
    Javidan, Manouchehr
    Dumont, Guy A.
    Tafreshi, Reza
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (07) : 1639 - 1651
  • [9] Epileptic Seizure Detection in Long-Term EEG Recordings by Using Wavelet-Based Directed Transfer Function
    Wang, Dong
    Ren, Doutian
    Li, Kuo
    Feng, Yiming
    Ma, Dan
    Yan, Xiangguo
    Wang, Gang
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (11) : 2591 - 2599
  • [10] Application of a multivariate seizure detection and prediction method to non-invasive and intracranial long-term EEG recordings
    Schad, Ariane
    Schindler, Kaspar
    Schelter, Bjoern
    Maiwald, Thomas
    Brandt, Armin
    Timmer, Jens
    Schulze-Bonhage, Andreas
    CLINICAL NEUROPHYSIOLOGY, 2008, 119 (01) : 197 - 211