OPTIMAL ASYMPTOTIC MEAN-SQUARE ERROR FOR KERNEL DENSITY AND REGRESSION ESTIMATES UNDER MIXING

被引:0
|
作者
BOSQ, D
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1993年 / 316卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under mild conditions the mean square error of the kernel density estimate for a stationary process is OF(n-4/5). More precisely this convergence rate is reached if f is-an-element-of C2(b), sup(t greater-than-or-equal-to 1)\\f(X0,Xt)-f X f\\infinity and alpha(sigma(X0), sigma(X(t))) = OF(t-2) with standard notations). Analogous results are given for the kernel regression estimate. We get uniform results:(~)[GRAPHICS](~)where C, J and M are specified.
引用
收藏
页码:293 / 295
页数:3
相关论文
共 50 条