QUANTUM-MECHANICS WITH Q-DEFORMED COMMUTATORS AND PERIODIC VARIABLES

被引:10
|
作者
KOBAYASHI, T
SUZUKI, T
机构
[1] Inst. of Phys., Tsukuba Univ., Ibaraki
来源
关键词
D O I
10.1088/0305-4470/26/21/043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A q-deformed commutator for arbitrary q is derived from a variable with a periodic boundary condition such as an azimuthal angle psi (0 less-than-or-equal-to psi < 2pi). A Hamiltonian can be written down in an Hermitian form for q = e(alpha) or q = e(ialpha) with alpha is-an-element-of R, and its eigenfunctions and eigenvalues are obtained. Algebraic structures, W1+infinity and U(q)(sl2), of this model and introductions of gauge interactions are discussed. Extensions to man variables and some elementary examples are presented.
引用
收藏
页码:6055 / 6065
页数:11
相关论文
共 50 条
  • [1] QUANTUM-MECHANICS FOR Q-DEFORMED ROTATORS
    KOBAYASHI, T
    SUZUKI, T
    PHYSICS LETTERS B, 1993, 317 (03) : 359 - 362
  • [2] DYNAMICAL SYMMETRIES IN Q-DEFORMED QUANTUM-MECHANICS
    LOREK, A
    WESS, J
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1995, 67 (04): : 671 - 679
  • [3] GEOMETRIC PHASE IN Q-DEFORMED QUANTUM-MECHANICS
    DUTTAROY, B
    GHOSH, G
    PHYSICS LETTERS A, 1993, 173 (06) : 439 - 441
  • [4] CURVATURE OF HILBERT-SPACE AND Q-DEFORMED QUANTUM-MECHANICS
    DUTTAROY, B
    GHOSH, G
    MODERN PHYSICS LETTERS A, 1993, 8 (15) : 1427 - 1432
  • [5] ON THE CONSISTENT CONSTRAINT OF THE DEFORMATION PARAMETER FOR Q-DEFORMED QUANTUM-MECHANICS
    LI, K
    CHEN, YX
    MA, ZS
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1994, 21 (03) : 299 - 302
  • [6] A q-deformed quantum mechanics
    Zhang, JZ
    PHYSICS LETTERS B, 1998, 440 (1-2) : 66 - 68
  • [7] q-deformed Quantum Mechanics with q-translation Symmetry and Supersymmetric q-deformed Quantum Mechanics
    Won Sang Chung
    Hassan Hassanabadi
    Few-Body Systems, 2020, 61
  • [8] q-deformed Quantum Mechanics with q-translation Symmetry and Supersymmetric q-deformed Quantum Mechanics
    Chung, Won Sang
    Hassanabadi, Hassan
    FEW-BODY SYSTEMS, 2020, 61 (01)
  • [9] Quantum mechanics in q-deformed calculus
    Lavagno, A.
    Gervino, G.
    FOURTH INTERNATIONAL WORKSHOP DICE 2008: FROM QUANTUM MECHANICS THROUGH COMPLEXITY TO SPACETIME: THE ROLE OF EMERGENT DYNAMICAL STRUCTURES, 2009, 174
  • [10] Supersymmetric Q-deformed Quantum Mechanics
    Traikia, M. H.
    Mebarki, N.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 330 - 333