DOCKING BY LEAST-SQUARES FITTING OF MOLECULAR-SURFACE PATTERNS

被引:79
作者
BACON, DJ [1 ]
MOULT, J [1 ]
机构
[1] UNIV MARYLAND, MARYLAND BIOTECHNOL INST, CTR ADV RES BIOTECHNOL, ROCKVILLE, MD 20850 USA
关键词
DOCKING; MOLECULAR SURFACE; ELECTROSTATIC ENERGY; LEAST-SQUARES FITTING; PATTERN MATCHING;
D O I
10.1016/0022-2836(92)90405-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular surfaces are fitted to each other by a new solution to the problem of docking a ligand into the active site of a protein molecule. The procedure constructs patterns of points on the surfaces and superimposes them upon each other using a least-squares best-fit algorithm. This brings the surfaces into contact and provides a direct measure of their local complementarity. The search over the ligand surface produces a large number of dockings, of which a small fraction having the best complementarity and the least steric hindrance are evaluated for electrostatic interaction energy. When applied to molecules taken from crystallographically observed complexes, this procedure consistently assigns the lowest electrostatic energies to correct dockings. On independently determined structures, the ability of the method to discern correct dockings depends on how much conformational difference there is between the free and complexed forms of the molecules. The procedure is found to be fast enough on contemporary workstation computers to permit many conformations to be considered, and tolerant enough to make rather coarse bond dihedral sampling a practicable way to overcome the problem of structural flexibility. © 1992.
引用
收藏
页码:849 / 858
页数:10
相关论文
共 39 条
[1]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[2]  
BOLIN JT, 1982, J BIOL CHEM, V257, P13650
[3]   POLAR HYDROGEN POSITIONS IN PROTEINS - EMPIRICAL ENERGY PLACEMENT AND NEUTRON-DIFFRACTION COMPARISON [J].
BRUNGER, AT ;
KARPLUS, M .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1988, 4 (02) :148-156
[4]   SHAPE COMPLEMENTARITY AT THE HEMOGLOBIN ALPHA-1-BETA-1-SUBUNIT INTERFACE [J].
CONNOLLY, ML .
BIOPOLYMERS, 1986, 25 (07) :1229-1247
[5]   USING SHAPE COMPLEMENTARITY AS AN INITIAL SCREEN IN DESIGNING LIGANDS FOR A RECEPTOR-BINDING SITE OF KNOWN 3-DIMENSIONAL STRUCTURE [J].
DESJARLAIS, RL ;
SHERIDAN, RP ;
SEIBEL, GL ;
DIXON, JS ;
KUNTZ, ID ;
VENKATARAGHAVAN, R .
JOURNAL OF MEDICINAL CHEMISTRY, 1988, 31 (04) :722-729
[6]   REAL-SPACE REFINEMENT OF STRUCTURE OF HEN EGG-WHITE LYSOZYME [J].
DIAMOND, R .
JOURNAL OF MOLECULAR BIOLOGY, 1974, 82 (03) :371-&
[7]  
Foley J. D., 1990, COMPUTER GRAPHICS PR
[8]   IMAGE APPROXIMATION TO REACTION FIELD [J].
FRIEDMAN, HL .
MOLECULAR PHYSICS, 1975, 29 (05) :1533-1543
[10]   AUTOMATED DOCKING OF SUBSTRATES TO PROTEINS BY SIMULATED ANNEALING [J].
GOODSELL, DS ;
OLSON, AJ .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1990, 8 (03) :195-202