AN OBSERVER FOR INFINITE-DIMENSIONAL DISSIPATIVE BILINEAR-SYSTEMS

被引:33
|
作者
XU, CZ
LIGARIUS, P
GAUTHIER, JP
机构
[1] MMAS,CNRS,URA 399,F-57070 METZ,FRANCE
[2] INSA,LMI ROUEN,CNRS,URA 1378,DEPT MATH,F-76131 MONT ST AIGNAN,FRANCE
关键词
OBSERVERS; INFINITE-DIMENSIONAL SYSTEMS; WEAK AND STRONG CONVERGENCE;
D O I
10.1016/0898-1221(95)00014-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider bilinear systems of the form x(t) = Ax(t) + u(t)Bx(t), y(t) = [x(t),c] on an infinite-dimensional Hilbert space H, where A is the generator of a semigroup of contraction, B is a bounded dissipative operator and c is-an-element-of H. The input signal u is-an-element-of L(infinity) (R+) such that u(t) greater-than-or-equal-to 0 for almost every t is-an-element-of R+. We present a simple observer for this class of systems with the estimation error converging weakly to zero in H for every sufficiently rich input (inputs that we call ''regularly persistent''). Our result is a generalization of the previous results in [1,2].
引用
收藏
页码:13 / 21
页数:9
相关论文
共 50 条