SIMULATION OF TRUNCATED NORMAL VARIABLES

被引:327
作者
ROBERT, CP
机构
[1] UNIV ROUEN,CNRS,URA 1378,PARIS,FRANCE
[2] INSEE,CREST,PARIS,FRANCE
关键词
ACCEPT-REJECT; GIBBS SAMPLING; MARKOV CHAIN MONTE CARLO; CENSORED MODELS; ORDER-RESTRICTED MODELS;
D O I
10.1007/BF00143942
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We provide simulation algorithms for one-sided and two-sided truncated normal distributions. These algorithms are then used to simulate multivariate normal variables with convex restricted parameter space for any covariance structure.
引用
收藏
页码:121 / 125
页数:5
相关论文
共 15 条
[1]  
Chen M.H., Deely J., Application of a new Gibbs Hit-and-Run sampler to a constrained linear multiple regression problem, (1992)
[2]  
Devroye L., Non-uniform random variate generation, (1985)
[3]  
Dykstra R.L., Robertson T., An algorithm for isotonic regression for two or more independent variables, The Annals of Statistics, 10, pp. 708-716, (1982)
[4]  
Gelfand A.E., Smith A.F.M., Sampling based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, pp. 398-409, (1990)
[5]  
Gelfand A.E., Smith A.F.M., Lee T.M., Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling, Journal of the American Statistical Association, 87, pp. 523-532, (1992)
[6]  
Gelman A., Rubin D.B., Inference from iterative simulation using multiple sequences (with discussion), Statistical Science, 7, pp. 457-511, (1992)
[7]  
Geyer C.J., Practical Monte-Carlo Markov Chain (with discussion), Statistical Science, 7, pp. 473-511, (1992)
[8]  
Hastings W.K., Monte-Carlo sampling methods using Markov chains and their applications, Biometrika, 57, pp. 97-109, (1971)
[9]  
Marsaglia G., Generating a variable from the tail of a normal distribution, Technometrics, 6, pp. 101-102, (1964)
[10]  
Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E., Equations of state calculations by fast computing machines, Journal of Chemical Physics, 21, pp. 1087-91, (1953)