ON A BOUNDARY VALUE PROBLEM WITH MATRIX COEFFICIENT WHICH HAS SPECTRAL PARAMETER IN BOUNDARY CONDITION

被引:0
|
作者
Akgun, Fatma Aydin [1 ]
Bayramoglu, Mehmet [1 ]
机构
[1] Yildiz Tekn Univ, Kimya Metaluji Fak, Matemat Muhendisligi Bolomu, Istanbul, Turkey
关键词
Self-adjoint operator; spectral parameter; eigenvalue; eigenfunction;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper following boundary value problem is considered. - y'' + Q(x) y = lambda R(x) y, a < x < b y' (x) = 0 beta(1)y(b) - beta(2)y'(b) = lambda alpha y(b) Here Q(x), R(x) is n x n self-adjoint matrix functions, R(x) is positive matrix, alpha, beta(1), beta(2) are constants satisfy some conditions and lambda is a spectral parameter. The spectrum of considered boundary value problem is investigated and the expansion formulas according to eigenvalues are obtained.
引用
收藏
页码:175 / 190
页数:16
相关论文
共 50 条