ON CONTINUED FRACTION EXPANSIONS OF FIBONACCI AND LUCAS DIRICHLET SERIES

被引:0
|
作者
Komatsu, Takao [1 ]
机构
[1] Hirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
来源
FIBONACCI QUARTERLY | 2008年 / 46-47卷 / 03期
基金
日本学术振兴会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find (non-regular) continued fraction expansions for infinite reciprocal sums of Fibonacci and Lucas numbers. We give continued fraction expansions of some more related series. Moreover, we prove that Fibonacci and Lucas Dirichlet series like Sigma(infinity)(n=1) 1/F-n(s) define hypertranscendental functions, and we investigate the approximates of the series modulo positive integers.
引用
收藏
页码:268 / 278
页数:11
相关论文
共 50 条