NOETHER-LEFSCHETZ PROBLEMS FOR VECTOR-BUNDLES

被引:0
|
作者
SPANDAW, JG
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize two Noether-Lefschetz theorems for surfaces by L. EIN to varieties of arbitrary even dimension. Our results also generalize the classical Noether-Lefschetz theorem for complete intersections of even dimension in P''.
引用
收藏
页码:287 / 308
页数:22
相关论文
共 50 条
  • [1] A Noether-Lefschetz theorem for vector bundles
    Spandaw, JG
    MANUSCRIPTA MATHEMATICA, 1996, 89 (03) : 319 - 323
  • [2] EXTENSIONS OF VECTOR BUNDLES WITH APPLICATION TO NOETHER-LEFSCHETZ THEOREMS
    Ravindra, G. V.
    Tripathi, Amit
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (05)
  • [3] GROTHENDIECK-LEFSCHETZ AND NOETHER-LEFSCHETZ FOR BUNDLES
    Ravindra, G., V
    Tripathi, Amit
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (12) : 5025 - 5034
  • [5] BRILL-NOETHER FOR VECTOR-BUNDLES
    HIRSCHOWITZ, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (04): : 153 - 156
  • [6] On a problem of Noether-Lefschetz type
    Amerik, E
    COMPOSITIO MATHEMATICA, 1998, 112 (03) : 255 - 271
  • [7] The Noether-Lefschetz conjecture and generalizations
    Bergeron, Nicolas
    Li, Zhiyuan
    Millson, John
    Moeglin, Colette
    INVENTIONES MATHEMATICAE, 2017, 208 (02) : 501 - 552
  • [8] Developments in Noether-Lefschetz theory
    Brevik, John
    Nollet, Scott
    HODGE THEORY, COMPLEX GEOMETRY, AND REPRESENTATION THEORY, 2014, 608 : 21 - 50
  • [9] The Noether-Lefschetz conjecture and generalizations
    Nicolas Bergeron
    Zhiyuan Li
    John Millson
    Colette Moeglin
    Inventiones mathematicae, 2017, 208 : 501 - 552
  • [10] NOETHER-LEFSCHETZ LOCUS FOR SURFACES
    KIM, SO
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (01) : 369 - 384