Chern-Hamilton's conjecture and K-contactness

被引:0
|
作者
Rukimbira, P [1 ]
机构
[1] FLORIDA INT UNIV,DEPT MATH,MIAMI,FL 33199
来源
HOUSTON JOURNAL OF MATHEMATICS | 1995年 / 21卷 / 04期
关键词
K-contact; almost regular; critical contact metric; J-vector field;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A contact form whose characteristic vector field induces a Riemannian flow is K-contact. This provides a positive answer to an extended Chern-Hamilton's conjecture on the existence of critical contact metrics for almost regular contact forms. Examples of non-almost regular K-contact forms are provided and it is also proved that tori don't carry nowhere horizontal J-vector fields.
引用
收藏
页码:709 / 718
页数:10
相关论文
共 50 条
  • [1] Chern's conjecture on minimal hypersurfaces
    Hongcang Yang
    Qing-Ming Cheng
    Mathematische Zeitschrift, 1998, 227 : 377 - 390
  • [2] Chern's conjecture on minimal hypersurfaces
    Yang, HC
    Cheng, QM
    MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (03) : 377 - 390
  • [3] Notes on Chern’s Affine Bernstein Conjecture
    An-Min Li
    Ruiwei Xu
    Udo Simon
    Fang Jia
    Results in Mathematics, 2011, 60 : 133 - 155
  • [4] Notes on Chern's Affine Bernstein Conjecture
    Li, An-Min
    Xu, Ruiwei
    Simon, Udo
    Jia, Fang
    RESULTS IN MATHEMATICS, 2011, 60 (1-4) : 133 - 155
  • [5] Chern's conjecture for special affine manifolds
    Klingler, Bruno
    ANNALS OF MATHEMATICS, 2017, 186 (01) : 69 - 95
  • [6] Positive sectional curvature, symmetry and Chern's conjecture
    Sun, Hongwei
    Wang, Yusheng
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (01) : 129 - 136
  • [7] On Ueno's conjecture K
    Chen, Jungkai A.
    Hacon, Christopher D.
    MATHEMATISCHE ANNALEN, 2009, 345 (02) : 287 - 296
  • [8] On Ueno’s conjecture K
    Jungkai A. Chen
    Christopher D. Hacon
    Mathematische Annalen, 2009, 345 : 287 - 296
  • [9] π-forms of Brauer’s k(B)—conjecture and Olsson’s Conjecture
    Yanjun Liu
    Algebras and Representation Theory, 2011, 14 : 213 - 215
  • [10] π-forms of Brauer's k(B)-conjecture and Olsson's Conjecture
    Liu, Yanjun
    ALGEBRAS AND REPRESENTATION THEORY, 2011, 14 (02) : 213 - 215