SOME CONGRUENCES FOR GENERALIZED EULER NUMBERS

被引:16
|
作者
GESSEL, IM [1 ]
机构
[1] MIT,CAMBRIDGE,MA 02139
关键词
D O I
10.4153/CJM-1983-039-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:687 / 709
页数:23
相关论文
共 50 条
  • [1] SOME CONGRUENCES INVOLVING EULER NUMBERS
    He, Yuan
    Liao, Qunying
    FIBONACCI QUARTERLY, 2008, 46-47 (03): : 225 - 234
  • [2] Congruences for Euler numbers
    Chen, KW
    FIBONACCI QUARTERLY, 2004, 42 (02): : 128 - 140
  • [3] Some identities and congruences concerning Euler numbers and polynomials
    Maiga, Hamadoun
    JOURNAL OF NUMBER THEORY, 2010, 130 (07) : 1590 - 1601
  • [4] On some new congruences for generalized Bernoulli numbers
    Kanemitsu, Shigeru
    Urbanowicz, Jerzy
    Wang, Nianliang
    ACTA ARITHMETICA, 2012, 155 (03) : 247 - 258
  • [5] SOME CONGRUENCES INVOLVING GENERALIZED FIBONACCI NUMBERS
    WALL, CR
    FIBONACCI QUARTERLY, 1979, 17 (01): : 29 - 33
  • [6] SOME PROPERTIES OF GENERALIZED EULER NUMBERS
    LEEMING, DJ
    MACLEOD, RA
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (03): : 606 - 617
  • [7] Super congruences and Euler numbers
    Sun Zhi-Wei
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) : 2509 - 2535
  • [8] Super congruences and Euler numbers
    Zhi-Wei Sun
    Science China Mathematics, 2011, 54 : 2509 - 2535
  • [9] Super congruences and Euler numbers
    SUN Zhi-Wei Department of Mathematics
    Science China Mathematics, 2011, (12) : 2509 - 2535
  • [10] Super congruences and Euler numbers
    SUN ZhiWei Department of Mathematics Nanjing University Nanjing China
    Science China(Mathematics), 2011, 54 (12) : 2509 - 2535