A QUASI-SUBGRADIENT SCHEME FOR CALCULATING SURROGATE CONSTRAINTS

被引:0
|
作者
SIKORSKI, J
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:821 / 827
页数:7
相关论文
共 50 条
  • [1] QUASI-SUBGRADIENT ALGORITHMS FOR CALCULATING SURROGATE CONSTRAINTS
    SIKORSKI, J
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1986, 82 : 233 - 236
  • [2] Incremental quasi-subgradient methods for minimizing the sum of quasi-convex functions
    Hu, Yaohua
    Yu, Carisa Kwok Wai
    Yang, Xiaoqi
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 75 (04) : 1003 - 1028
  • [3] QUASI-SUBGRADIENT METHODS WITH BREGMAN DISTANCE FOR QUASI-CONVEX FEASIBILITY PROBLEMS
    Hu, Yaohua
    Li, Jingchao
    Liu, Yanyan
    Yu, Carisa Kwok Wai
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (03): : 381 - 395
  • [4] STOCHASTIC QUASI-SUBGRADIENT METHOD FOR STOCHASTIC QUASI-CONVEX FEASIBILITY PROBLEMS
    LI, Gang
    LI, Minghua
    Hu, Yaohua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (04): : 713 - 725
  • [5] Incremental quasi-subgradient methods for minimizing the sum of quasi-convex functions
    Yaohua Hu
    Carisa Kwok Wai Yu
    Xiaoqi Yang
    Journal of Global Optimization, 2019, 75 : 1003 - 1028
  • [6] The effect of deterministic noise on a quasi-subgradient method for quasi-convex feasibility problems
    Hu Y.
    Liu Y.
    Li M.
    Li, Minghua (minghuali20021848@163.com), 1600, Biemdas Academic Publishers (02): : 235 - 247
  • [7] CALCULATING SURROGATE CONSTRAINTS
    DYER, ME
    MATHEMATICAL PROGRAMMING, 1980, 19 (03) : 255 - 278
  • [8] Convergence analysis of incremental quasi-subgradient method on Riemannian manifolds with lower bounded curvature
    Ansari, Qamrul Hasan
    Uddin, Moin
    OPTIMIZATION, 2024,
  • [9] Incremental Quasi-Subgradient Method for Minimizing Sum of Geodesic Quasi-Convex Functions on Riemannian Manifolds with Applications
    Ansari, Qamrul Hasan
    Babu, Feeroz
    Zeeshan, Mohd
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (13) : 1492 - 1521
  • [10] Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces
    Regina S. Burachik
    Yaohua Hu
    Xiaoqi Yang
    Journal of Global Optimization, 2022, 83 : 249 - 271