LOCALIZATION FOR RANDOM SCHRODINGER-OPERATORS WITH POISSON POTENTIAL

被引:0
|
作者
STOLZ, G
机构
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Localization at all energies is proved for the one-dimensional random Schrodinger operator with Poisson potential Sigma(j) f (x - X(j)(omega)). The single site potential f is assumed to be non-negative and compactly supported. The result holds for arbitrary density of the Poisson process. Eigenfunctions decay exponentially at the rate of the Lyapunov exponent. Crucial to the proof is a new result on spectral averaging.
引用
收藏
页码:297 / 314
页数:18
相关论文
共 50 条