Intraspecific variation of a wild potato species, Solanum acaule Bitt., was analyzed by RFLPs of genomic DNA. One hundred and five accessions were selected throughout the distribution area, including all subspecies, i.e., ssp. albicans (hexaploid), ssp. punae (tetraploid), ssp. acaule (tetraploid) and ssp. aemulans (tetraploid). Twenty-seven low-copy DNA clones (probes) were Southern hybridized with EcoRI, EcoRV, HindIII, and XbaI digests of total DNA of all accessions. In total, 238 RFLPs were detected from 94 enzyme x probe combinations. Among them, 49 RFLPs were specific to ssp. albicans, suggesting that the additional third genome is distinct from its two other genomes. RFLPs between and within subspecies were analyzed by principal component analysis. DNA similarities between subspecies coincided with a former taxonomic treatment in the sense that ssp. albicans is the most distantly related to ssp. acaule and ssp. aemulans is distantly related. Subspecies acaule and ssp. punae were indistinguishable. In addition, RFLPs could be used to distinguish groups within subspecies. Subspecies aemulans, confined to Argentina, was divided into two populations, one from the province of La Rioja and the other from the province of Jujuy. In ssp. acaule, some accessions from the southernmost distribution area were clearly distinguishable, while the others varied continuously, showing a geographical cline from Peru to Argentina.