On the Lindelof property of spaces of continuous functions over a Tychonoff space and its subspaces

被引:0
|
作者
Okunev, Oleg [1 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fisicomatemat, Av San Claudio & Rio Verde S-N,Col San Manuel, Puebla 72570, Mexico
来源
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE | 2009年 / 50卷 / 04期
关键词
pointwise convergence; Lindelof property;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study relations between the Lindelof property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if C-p(X) is Lindelof, Y = X boolean OR {p}, and the point p has countable character in Y, then C-p(Y) is Lindelof; b) if Y is a cozero subspace of a Tychonoff space X, then l(C-p(Y)(omega)) <= l(C-p(X-omega) and ext(C-p(Y)(omega)) <= ext(C-p (X)(omega)).
引用
收藏
页码:629 / 635
页数:7
相关论文
共 50 条