THE QUANTUM GROUP AS A SYMMETRY - THE SCHRODINGER-EQUATION OF THE N-DIMENSIONAL Q-DEFORMED HARMONIC-OSCILLATOR

被引:0
|
作者
CAROWWATAMURA, U
WATAMURA, S
机构
[1] ETH ZURICH,FORSCHUNGSINST MATH,CH-8092 ZURICH,SWITZERLAND
[2] TOHOKU UNIV,DEPT PHYS,SENDAI,MIYAGI 98077,JAPAN
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the aim to construct a dynamical model with quantum group symmetry, the q-deformed Schrodinger equation of the harmonic oscillator on the N-dimensional quantum Euclidian space is investigated. After reviewing the differential calculus on the q-Euclidian space, the q-analog of the creation-annihilation operator is constructed. It is shown that it produces systematically all eigenfunctions of the Schrodinger equation and eigenvalues. We also present an alternative way to solve the Schrodinger equation which is based on the q-analysis. We represent the Schrodinger equation by the q-difference equation and solve it by using q-polynomials and q-exponential functions. The problem of the involution corresponding to the reality condition is discussed.
引用
收藏
页码:375 / 389
页数:15
相关论文
共 50 条
  • [1] THE Q-DEFORMED SCHRODINGER-EQUATION OF THE HARMONIC-OSCILLATOR ON THE QUANTUM EUCLIDEAN-SPACE
    CAROWWATAMURA, U
    WATAMURA, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (22): : 3989 - 4008
  • [2] NONINVARIANCE GROUP FOR N-DIMENSIONAL ISOTROPIC HARMONIC-OSCILLATOR
    MAJOR, ME
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (10) : 1952 - 1957
  • [3] WKB EQUIVALENT POTENTIALS FOR THE Q-DEFORMED HARMONIC-OSCILLATOR
    BONATSOS, D
    DASKALOYANNIS, C
    KOKKOTAS, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (15): : L795 - L801
  • [4] THE STATISTICAL DISTRIBUTION FUNCTION OF THE Q-DEFORMED HARMONIC-OSCILLATOR
    GE, ML
    SU, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (13): : L721 - L723
  • [5] A Q-DEFORMED HARMONIC-OSCILLATOR IN A FINITE-DIMENSIONAL HILBERT-SPACE
    KUANG, LM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20): : L1079 - L1083
  • [6] ONE-DIMENSIONAL SCHRODINGER-EQUATION IN THE HARMONIC-OSCILLATOR BASIS WITH VARIOUS POTENTIALS
    LAI, ST
    PALTING, P
    CHIU, YN
    COMPUTER PHYSICS COMMUNICATIONS, 1994, 82 (2-3) : 221 - 232
  • [7] A Q-DEFORMED OSCILLATOR SYSTEM WITH QUANTUM GROUP SLQ(L) SYMMETRY
    SUN, CP
    LIU, XF
    LU, JF
    GE, ML
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (02): : L35 - L38
  • [8] NEURAL-NETWORK SOLUTION OF THE SCHRODINGER-EQUATION FOR A 2-DIMENSIONAL HARMONIC-OSCILLATOR
    ANDROSIUK, J
    KULAK, L
    SIENICKI, K
    CHEMICAL PHYSICS, 1993, 173 (03) : 377 - 383
  • [9] Q-DEFORMED OSCILLATOR ALGEBRA AS A QUANTUM GROUP
    YAN, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (22): : L1155 - L1160
  • [10] PROBLEM - DEGENERACY OF THE N-DIMENSIONAL HARMONIC-OSCILLATOR
    LAPIDUS, IR
    AMERICAN JOURNAL OF PHYSICS, 1985, 53 (10) : 981 - &