A DESCENT LEMMA

被引:0
|
作者
BEAUVILLE, A
LASZLO, Y
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a ring, f a nonzero divisor in A, ($) over cap A the completion of A for the (f)-adic topology. We prove that the data of a vector bundle on Spec (A) is equivalent to the data of a vector bundle on the open subset f not equal 0 of Spec (A) and on Spec (($) over cap A), together with an isomorphism of their pull back to the open subset f not equal 0 of Spec (A).
引用
收藏
页码:335 / 340
页数:6
相关论文
共 50 条
  • [1] On the stabilization of relative trace formulae: Descent and the fundamental lemma
    Leslie, Spencer
    ADVANCES IN MATHEMATICS, 2022, 394
  • [2] A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications
    Bauschke, Heinz H.
    Bolte, Jerome
    Teboulle, Marc
    MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (02) : 330 - 348
  • [3] Coincidence Lemma and Substitution Lemma
    Braselmann, Patrick
    Koepke, Peter
    FORMALIZED MATHEMATICS, 2005, 13 (01): : 17 - 26
  • [4] Cutting lemma and union lemma for the domination game
    Dorbec, Paul
    Henning, Michael A.
    Klavzar, Sandi
    Kosmrlj, Gasper
    DISCRETE MATHEMATICS, 2019, 342 (04) : 1213 - 1222
  • [5] ON DESCENT AND DESCENT GROUPS
    KEESING, RM
    CURRENT ANTHROPOLOGY, 1968, 9 (05) : 453 - &
  • [6] Schwarz Lemma and Boundary Schwarz Lemma for Pluriharmonic Mappings
    Zhu, Jian-Feng
    FILOMAT, 2018, 32 (15) : 5385 - 5402
  • [7] Directed Lovasz local lemma and Shearer's lemma
    Kirousis, Lefteris
    Livieratos, John
    Psaromiligkos, Kostas, I
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (1-3) : 133 - 155
  • [8] The expression lemma
    Laemmel, Ralf
    Rypacek, Ondrej
    MATHEMATICS OF PROGRAM CONSTRUCTION, PROCEEDINGS, 2008, 5133 : 193 - +
  • [9] MIXTURE LEMMA
    Kuo, Hung-Wen
    Liu, Tai-Ping
    Noh, Se Eun
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2010, 5 (01): : 1 - 10
  • [10] The Yoneda Lemma
    Penner, Robert
    TOPOLOGY AND K-THEORY: LECTURES BY DANIEL QUILLEN, 2020, 2262 : 39 - 44