Multilinear forms which are products of linear forms

被引:0
|
作者
Pappas, Alexandros [1 ]
机构
[1] TEI Piraeus, Sch Technol Applicat, Civil Engn Dept, GR-11244 Athens, Greece
关键词
Multilinear forms; Symmetric m-linear form; Quartic functional; Hermitian form; Homogeneous polynomial;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The conditions under which, multilinear forms (the symmetric case and the non symmetric case), can be written as a product of linear forms, are considered. Also we generalize a result due to S. Kurepa for 2(n)-functionals in a group G.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 50 条
  • [1] Spline approximation, Kronecker products and multilinear forms
    Lamping, Frank
    Pena, Juan-Manuel
    Sauer, Tomas
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2016, 23 (03) : 535 - 557
  • [2] Zero sets and linear dependence of multilinear forms
    Aron, Richard
    Downey, Larry
    Maestre, Manuel
    NOTE DI MATEMATICA, 2006, 25 (01): : 49 - 54
  • [3] PRODUCTS OF LINEAR FORMS
    SCHOFIELD, R
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1964, 60 (04): : 1032 - &
  • [5] Congruence of multilinear forms
    Belitskii, Genrich R.
    Sergeichuk, Vladimir V.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) : 751 - 762
  • [6] On discriminants of multilinear forms
    Dolotin, VV
    IZVESTIYA MATHEMATICS, 1998, 62 (02) : 215 - 245
  • [7] CONTRACTION OF MULTILINEAR FORMS
    OKEEFFE, JD
    MATRIX AND TENSOR QUARTERLY, 1977, 27 (04): : 141 - 144
  • [8] RANDOM MULTILINEAR FORMS
    KRAKOWIAK, W
    SZULGA, J
    ANNALS OF PROBABILITY, 1986, 14 (03): : 955 - 973
  • [9] Geometry of multilinear forms
    Cavalcante, W., V
    Pellegrino, D. M.
    Teixeira, E., V
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (02)
  • [10] UNCONDITIONALITY IN TENSOR PRODUCTS AND IDEALS OF POLYNOMIALS, MULTILINEAR FORMS AND OPERATORS
    Carando, Daniel
    Galicer, Daniel
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (04): : 845 - 869