COMPUTABLE NUMERICAL BOUNDS FOR LAGRANGE MULTIPLIERS OF STATIONARY-POINTS OF NON-CONVEX DIFFERENTIABLE NON-LINEAR PROGRAMS

被引:9
|
作者
MANGASARIAN, OL
机构
[1] Univ of Wisconsin-Madison, Computer, Sciences Dep, Madison, WI, USA, Univ of Wisconsin-Madison, Computer Sciences Dep, Madison, WI, USA
关键词
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work sponsored by the National Science Foundation under Grant No;
D O I
10.1016/0167-6377(85)90030-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
7
引用
收藏
页码:47 / 48
页数:2
相关论文
共 50 条
  • [1] LAGRANGE MULTIPLIERS IN NON-CONVEX OPTIMIZATION AND APPLICATIONS
    AUBIN, JP
    CLARKE, FH
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (06): : 451 - 454
  • [3] A Non-Convex Zones Identification Method for Non-Linear Non-Convex Constraints Applied to LP
    Huerta Balcazar, Emanuel
    Cerda, Jaime
    Ramirez, Salvador
    2019 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2019), 2019,
  • [4] STATIONARY POINTS IN NON-LINEAR PROGRAMMING
    ALTMAN, M
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1964, 12 (01): : 29 - &
  • [5] DECOMPOSITION IN A NON-LINEAR PROGRAMMING PROBLEM WITH A NON-CONVEX CONSTRAINT
    KOSOLAP, AI
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1984, 24 (03): : 84 - 86
  • [6] LOOKAHEAD CONVERGES TO STATIONARY POINTS OF SMOOTH NON-CONVEX FUNCTIONS
    Wang, Jianyu
    Tantia, Vinayak
    Ballas, Nicolas
    Rabbat, Michael
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8604 - 8608
  • [7] The Computational Complexity of Finding Stationary Points in Non-Convex Optimization
    Hollender, Alexandros
    Zampetakis, Manolis
    THIRTY SIXTH ANNUAL CONFERENCE ON LEARNING THEORY, VOL 195, 2023, 195
  • [8] The computational complexity of finding stationary points in non-convex optimization
    Hollender, Alexandros
    Zampetakis, Manolis
    MATHEMATICAL PROGRAMMING, 2024,
  • [9] Interior-point method for non-linear non-convex optimization
    Luksan, L
    Matonoha, C
    Vlcek, J
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2004, 11 (5-6) : 431 - 453
  • [10] Performance Bounds for the Scenario Approach and an Extension to a Class of Non-Convex Programs
    Esfahani, Peyman Mohajerin
    Sutter, Tobias
    Lygeros, John
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (01) : 46 - 58