Magnetic properties of cobalt microwires measured by piezoresistive cantilever magnetometry

被引:4
|
作者
Tosolini, G. [1 ,2 ]
Michalik, J. M. [3 ,4 ,5 ]
Cordoba, R. [5 ]
de Teresa, J. M. [3 ,4 ,5 ]
Perez-Murano, F. [1 ]
Bausells, J. [1 ]
机构
[1] CSIC, IMB CNM, Microelect Barcelona, Bellaterra 08193, Spain
[2] IIT, Ctr Biomol Nanotechnol, I-73010 Arnesano, Italy
[3] Univ Zaragoza, CSIC, Fac Ciencias, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain
[4] Univ Zaragoza, CSIC, Fac Ciencias, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
[5] Univ Zaragoza, INA, LMA, Zaragoza 50018, Spain
来源
NANOFABRICATION | 2014年 / 1卷 / 01期
关键词
Piezoresistive cantilever magnetometry; cobalt focused electron beam induced deposition;
D O I
10.2478/nanofab-2014-0008
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.
引用
收藏
页码:80 / 85
页数:6
相关论文
共 50 条
  • [1] Piezoresistive cantilever designed for torque magnetometry
    Willemin, M
    Rossel, C
    Brugger, J
    Despont, MH
    Rothuizen, H
    Vettiger, P
    Hofer, J
    Keller, H
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (03) : 1163 - 1170
  • [2] Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry
    Stipe, BC
    Mamin, HJ
    Stowe, TD
    Kenny, TW
    Rugar, D
    PHYSICAL REVIEW LETTERS, 2001, 86 (13) : 2874 - 2877
  • [3] Cantilever magnetometry in pulsed magnetic fields
    Naughton, MJ
    Ulmet, JP
    Narjis, A
    Askenazy, S
    Chaparala, MV
    Hope, AP
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (11): : 4061 - 4065
  • [4] Recyclable organic bilayer piezoresistive cantilever for torque magnetometry at cryogenic temperatures
    Steven, Eden
    Krstovska, Danica
    Suarez, Daniel
    Berliani, Tasya
    Jobiliong, Eric
    Choi, Eun Sang
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 368
  • [5] Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry
    Gysin, Urs
    Rast, Simon
    Aste, Andreas
    Speliotis, Thanassis
    Werle, Christoph
    Meyer, Ernst
    NANOTECHNOLOGY, 2011, 22 (28)
  • [6] Perpendicular magnetic fields in cantilever beam magnetometry
    Koch, R. (koch@pdi-berlin.de), 1600, American Institute of Physics Inc. (96):
  • [7] Demonstration of cantilever magnetometry in pulsed magnetic fields
    Naughton, MJ
    Ulmet, JP
    Narjis, A
    Askenazy, S
    Chaparala, MV
    Richter, R
    PHYSICA B, 1998, 246 : 125 - 128
  • [8] Perpendicular magnetic fields in cantilever beam magnetometry
    Koch, R
    Das, AK
    Yamaguchi, H
    Pampuch, C
    Ney, A
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (05) : 2773 - 2778
  • [9] Noise Power Properties of Magnetic Nanoparticles as Measured in Thermal Noise Magnetometry
    Everaert, Katrijn
    Liebl, Maik
    Gutkelch, Dirk
    Wells, James
    Van Waeyenberge, Bartel
    Wiekhorst, Frank
    Leliaert, Jonathan
    IEEE ACCESS, 2021, 9 : 111505 - 111517
  • [10] Tuning of Magnetic Properties of Magnetic Microwires
    Chizhik, Alexander
    Gonzalez, Julian
    Corte-Leon, Paula
    Zhukov, Arcady
    Stupakiewicz, Andrzej
    IEEE MAGNETICS LETTERS, 2018, 9