NATURE OF THE RANDOM FORCE IN BROWNIAN-MOTION

被引:4
作者
MAZUR, P
BEDEAUX, D
机构
[1] LEIDEN UNIV,GORLAEUS LABS,DEPT PHYS & MACROMOLEC CHEM,POB 9502,2300 RA LEIDEN,NETHERLANDS
[2] LEIDEN UNIV,INST LORENTZ,2300 RA LEIDEN,NETHERLANDS
关键词
D O I
10.1021/la00048a016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We study the stochastic properties of the random force in a nonlinear Langevin equation for the time dependence of a variable alpha whose equilibrium distribution function P(eq)(alpha) is known. We assume that this random force is of a multiplicative character and consists of a factor C(alpha(t - epsilon)) multiplied by a random function f0(t) independent of alpha(t). We prove that in this case f0(t) is a Gaussian white process. We show that the function C(alpha) is the solution of a differential equation which involves P(eq)(alpha) and can easily be solved when this last function is Gaussian.
引用
收藏
页码:2947 / 2951
页数:5
相关论文
共 17 条
[1]  
[Anonymous], 1966, SIAM J CONTROL, DOI [10.1137/0304028, DOI 10.1137/0304028]
[2]  
Einstein A, 1906, ANN PHYS-BERLIN, V19, P371
[4]  
Ito K., 1951, MEM AM MATH SOC, V4, P1, DOI DOI 10.1090/MEMO/0004
[5]  
Ito K., 1944, P IMPERIAL ACAD, V20, P519, DOI DOI 10.3792/PIA/1195572786
[6]  
Langevin P, 1908, CR HEBD ACAD SCI, V146, P530
[7]  
LINDENBERG K, 1990, NONEQUILIBRIUM STATI
[8]   CAUSALITY, TIME-REVERSAL INVARIANCE AND THE LANGEVIN EQUATION [J].
MAZUR, P ;
BEDEAUX, D .
PHYSICA A, 1991, 173 (1-2) :155-174
[9]  
MAZUR P, 1992, PHYSICA A, V188, P693
[10]   WHEN AND WHY IS THE RANDOM FORCE IN BROWNIAN-MOTION A GAUSSIAN PROCESS [J].
MAZUR, P ;
BEDEAUX, D .
BIOPHYSICAL CHEMISTRY, 1991, 41 (01) :41-49