A WIND-TUNNEL STUDY OF TURBULENT-FLOW OVER A 2-DIMENSIONAL RIDGE

被引:95
|
作者
FINNIGAN, JJ
RAUPACH, MR
BRADLEY, EF
ALDIS, GK
机构
[1] CSIRO Centre for Environmental Mechanics, Canberra
关键词
D O I
10.1007/BF00120527
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We present a wind-tunnel simulation of adiabatic atmospheric flow normal to a rough, two-dimensional ridge. The data are analyzed in physical streamline coordinates, which are described in some detail. The mean velocity speed-up on the hill top is adequately predicted by existing formulae while the behaviour of the wake flow fits into a pattern that emerges from other wind-tunnel experiments. The turbulent stresses evolve in response to the extra strain rates induced by the hill, streamline curvature and acceleration: {Mathematical expression} s coupled strongly to acceleration while {Mathematical expression} nd {Mathematical expression} ollow curvature. These differing responses lead to significant phase differences between the changes in the component stresses as the hill is traversed. An analogous response is seen in the components of turbulent stress divergence, which are computed as part of streamwise momentum budgets. Only very close to the surface is turbulent stress divergence comparable to the inertial and pressure terms in the momentum budget; over most of the flow regime, the mean flow response is approximately inviscid. Finally, we compare our results with data from other wind tunnel models and from real hills. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:277 / 317
页数:41
相关论文
共 50 条