Calibrating Data to Sensitivity in Private Data Analysis

被引:71
作者
Proserpio, Davide [1 ]
Goldberg, Sharon [1 ]
McSherry, Frank [2 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Microsoft Res, Redmond, WA USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2014年 / 7卷 / 08期
关键词
D O I
10.14778/2732296.2732300
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an approach to differentially private computation in which one does not scale up the magnitude of noise for challenging queries, but rather scales down the contributions of challenging records. While scaling down all records uniformly is equivalent to scaling up the noise magnitude, we show that scaling records non-uniformly can result in substantially higher accuracy by bypassing the worst-case requirements of differential privacy for the noise magnitudes. This paper details the data analysis platform wPINQ, which generalizes the Privacy Integrated Query (PINQ) to weighted datasets. Using a few simple operators (including a non-uniformly scaling Join operator) wPINQ can reproduce (and improve) several recent results on graph analysis and introduce new generalizations (e.g., counting triangles with given degrees). We also show how to integrate probabilistic inference techniques to synthesize datasets respecting more complicated (and less easily interpreted) measurements.
引用
收藏
页码:637 / 648
页数:12
相关论文
共 23 条
[1]   Network science [J].
Barabasi, Albert-Laszlo .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1987)
[2]  
Blum A., 2013, P 4 C INNOVATIONS TH, P87, DOI DOI 10.1145/2422436.2422449
[3]  
Chen S., 2013, PROC ACMSIGMOD INT C, P653
[4]   Calibrating noise to sensitivity in private data analysis [J].
Dwork, Cynthia ;
McSherry, Frank ;
Nissim, Kobbi ;
Smith, Adam .
THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2006, 3876 :265-284
[5]  
Gaboardi M., 2013, ACM SIGPLAN SIGACT S
[6]  
Haeberlen A., 2011, P 20 USENIX SEC S AU
[7]  
Hay M., 2011, P SIGMOD 11
[8]   Accurate Estimation of the Degree Distribution of Private Networks [J].
Hay, Michael ;
Li, Chao ;
Miklau, Gerome ;
Jensen, David .
2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, :169-178
[9]  
Kasiviswanathan S., 2012, GRAPH ANAL NODE LEVE
[10]   The Dynamics of Viral Marketing [J].
Leskovec, Jure ;
Adamic, Lada A. ;
Huberman, Bernardo A. .
ACM TRANSACTIONS ON THE WEB, 2007, 1 (01)