Treatment of BC3H1 myocytes or 3T3 -L1 fibroblasts with fluoroaluminate (AlF4-), a direct activator of G proteins, increased the tyrosine phosphorylation of a 42-kDa cytosolic protein. AlF4- induced a parallel increase in protein kinase activity toward myelin basic protein (MBP) in partially purified cell extracts. To test whether AlF4- was activating the 42-kDa MAP (mitogen-activated protein) kinase, extracts from AlF4--treated cells were taken through the chromatographic steps routinely used to purify MAP kinase from growth factor-stimulated cells. Following phenyl-Superose chromatography, a peak of MBP kinase activity eluted at a position characteristic of MAP kinase. Immunoblotting of the active fractions with anti-phosphotyrosine antibodies revealed a single reactive protein band of M(r) 42,000. Stimulation of MAP kinase by AlF4- was rapid, peaking within 15 min and persisting for at least 1 h. In contrast, the activation of MAP kinase by insulin was transient, characteristic of its activation by growth factors in other cell types. Although concentrations of sodium fluoride greater than 1 mM also activated MAP kinase, this effect was shown to be dependent upon the simultaneous presence of aluminum ions in the medium. Activation of MAP kinase by AlF4- was not affected by either cellular depletion of protein kinase C or pretreatment of cells with pertussis toxin. Potential sites of action of AlF4- are discussed. These findings suggest that activation of a G protein(s) in intact cells can initiate events that result in tyrosine phosphorylation and activation of MAP kinase.