A MULTI-RESPONSE GAUSS-NEWTON ALGORITHM

被引:9
|
作者
BATES, DM [1 ]
WATTS, DG [1 ]
机构
[1] QUEENS UNIV,DEPT MATH & STAT,KINGSTON K7L 3N6,ONTARIO,CANADA
关键词
D O I
10.1080/03610918408812407
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:705 / 715
页数:11
相关论文
共 50 条
  • [1] A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss-Newton to Robust Gauss-Newton
    Qin, Youwei
    Kavetski, Dmitri
    Kuczera, George
    WATER RESOURCES RESEARCH, 2018, 54 (11) : 9655 - 9683
  • [2] CONVERGENCE ANALYSIS OF THE GENERAL GAUSS-NEWTON ALGORITHM
    SCHABACK, R
    NUMERISCHE MATHEMATIK, 1985, 46 (02) : 281 - 309
  • [3] On the Gauss-Newton method
    Argyros I.K.
    Hilout S.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 537 - 550
  • [4] Gauss-Newton method
    Wang, Yong
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (04) : 415 - 420
  • [5] The Incremental Gauss-Newton Algorithm with Adaptive Stepsize Rule
    Hiroyuki Moriyama
    Nobuo Yamashita
    Masao Fukushima
    Computational Optimization and Applications, 2003, 26 : 107 - 141
  • [6] A GAUSS-NEWTON ALGORITHM FOR EXPLORATORY FACTOR-ANALYSIS
    JENNRICH, RI
    PSYCHOMETRIKA, 1986, 51 (02) : 277 - 284
  • [7] The incremental Gauss-Newton algorithm with adaptive stepsize rule
    Moriyama, H
    Yamashita, N
    Fukushima, M
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 26 (02) : 107 - 141
  • [8] DAMPED GAUSS-NEWTON ALGORITHM FOR NONNEGATIVE TUCKER DECOMPOSITION
    Anh Huy Phan
    Tichavsky, Petr
    Cichocki, Andrzej
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 665 - 668
  • [9] Mitigation of Current Harmonics by a Modified Gauss-Newton Algorithm
    El Nady, Amr M.
    2009 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS, VOLS 1 AND 2, 2009, : 184 - 187
  • [10] Blind separation of convolutive mixtures: A Gauss-Newton algorithm
    Cruces, S
    Castedo, L
    PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1997, : 326 - 330